Math, asked by jiyasuraj6, 5 hours ago

please right answers only!

Attachments:

Answers

Answered by tyrbylent
0

Answer:

Step-by-step explanation:

(a ± b)² = a² ± 2ab + b²

a² - b² = (a - b)(a + b)

(i) 5m² + m = 3

5m² + m - 3 = 0

[ (√5 m)² + 2 × \frac{1}{2\sqrt{5} } × √5 m + ( \frac{1}{2\sqrt{5} } )² ] - ( \frac{1}{2\sqrt{5} } )² - 3 = 0

( √5 m + \frac{\sqrt{5} }{10} )² - \frac{61}{20} = 0

( √5 m + \frac{\sqrt{5} }{10} )² - ( \frac{\sqrt{61} }{2\sqrt{5} } )² = 0

( √5 m + \frac{\sqrt{5} }{10} - \frac{\sqrt{305} }{10} )( √5 m + \frac{\sqrt{5} }{10} + \frac{\sqrt{305} }{10} ) = 0

( √5 m + \frac{\sqrt{5} -\sqrt{305} }{10} )( √5 m + \frac{\sqrt{5} +\sqrt{305} }{10} ) = 0

1). √5 m + \frac{\sqrt{5} -\sqrt{305} }{10} = 0 ⇒ m = - \frac{\sqrt{5} -\sqrt{305} }{10} ÷ √5 ≈ 0.681

2). √5 m - \frac{\sqrt{5} +\sqrt{305} }{10} = 0 ⇒ m = - \frac{\sqrt{5} +\sqrt{305} }{10} ÷ √5 ≈ - 0.881

(ii) x(x - 1) = 1

x² - x - 1 = 0

[ x² - 2 × \frac{1}{2} × x + ( \frac{1}{2} )² ] - ( \frac{1}{2} )² - 1 = 0

( x - \frac{1}{2} )² - \frac{5}{4} = 0 ⇔ ( x - \frac{1}{2} )² - ( \frac{\sqrt{5} }{2} )² = 0

1). x - \frac{1}{2} - \frac{\sqrt{5} }{2} = 0 ⇒ x = \frac{1+\sqrt{5} }{2}1.618

2). x - \frac{1}{2} + \frac{\sqrt{5} }{2} = 0 ⇒ x = \frac{1-\sqrt{5} }{2}- 0.618

(iii). 3p² + 7p + 1 = 0

[ ( √3 p )² + 2 × \frac{7}{2\sqrt{3} } × √3 p + ( \frac{7}{2\sqrt{3} } )² ] - ( \frac{7}{2\sqrt{3} } )² + 1 = 0

( √3 p + \frac{7}{2\sqrt{3} } )² - \frac{37}{12} = 0

( √3 p + \frac{7}{2\sqrt{3} } - \frac{\sqrt{37} }{2\sqrt{3} } )( √3 p + \frac{7}{2\sqrt{3} } + \frac{\sqrt{37} }{2\sqrt{3} } ) = 0

1). √3 p = \frac{\sqrt{37} -7}{2\sqrt{3} }p = \frac{\sqrt{37} -7}{6}- 0.153

2). √3 p = - \frac{\sqrt{37} +7}{2\sqrt{3} }p = - \frac{\sqrt{37} +7}{6}- 2.180

Similar questions