Math, asked by guthikondakovipcr9zl, 11 months ago

please say answer very fast​

Attachments:

Answers

Answered by gourirupa
0

Step-by-step explanation:

2(\frac{x+2}{2x - 3 } )-9(\frac{2x-3}{x+2} ) = 3

=> \frac{2x + 4}{2x - 3} - \frac{18x - 27}{x + 2} = 3

=> \frac{(2x + 4)(x + 2) - (18x - 27)(2x - 3)}{(2x - 3)(x + 2)} = 3

=> (2x + 4)(x + 2) - (18x - 27)(2x - 3) = 3(2x - 3)(x + 2)

=> (2x² + 4x + 4x + 8) - (36x² - 54x - 54x + 81) = 3(2x² + 4x - 3x - 6)

=> (2x² + 8x + 8) - (36x² - 108x + 81) = 3(2x² + x - 6)

=> 2x² + 8x + 8 - 36x² + 108x - 81 = 6x² + 3x - 18

=> -34x² + 116x - 73 = 6x² + 3x - 18

=> 40x² - 113x + 91 = 0

If ax² + bx + c = 0 .

Solve this expression by using the sridhar acharya's formula :-\frac{-b + \sqrt{b^2 - 4ac} }{2a} and \frac{-b - \sqrt{b^2 - 4ac} }{2a} , these 2 are the roots

Here, a = 40 , b = - 113 , c = 91 .

I hope you can do this yourself , and this helps you .

Please Mark this Brainliest .

Similar questions