Math, asked by darwinharesh, 10 months ago

please say process for this question very fast

Attachments:

Answers

Answered by BrainlyPopularman
4

QUESTION :

  \\ \:  {\huge{.}}  \bf \:  \: If \:  \:  \sqrt{ \sin(x) }  +  \cos(x)  = 0 \:  \: then \:  \:  \sin(x)  = ? \\

ANSWER :

GIVEN :

  \\  \:  \: {\huge{.}} \:  \: \bf  \sqrt{ \sin(x) }  +  \cos(x)  = 0  \\

TO FIND :

 \\ \:\: \sin(x) = ? \:\: \\

SOLUTION :

  \\ \implies \bf  \sqrt{ \sin(x) }  +  \cos(x)  = 0  \\

  \\ \implies \bf  \sqrt{ \sin(x) }   =  -   \cos(x)   \\

• Square on both sides –

  \\ \implies \bf  \{\sqrt{ \sin(x) } \} ^{2}    = \{  -   \cos(x) \}^{2}    \\

  \\ \implies \bf  \sin(x) = \cos^{2} (x)   \\

• We know that –

  \\ \dashrightarrow \bf  \sin ^{2} (x)  +  \cos^{2} (x) = 1   \\

• So that –

  \\ \implies \bf  \sin(x) =1 -  \sin^{2} (x)   \\

  \\ \implies \bf \sin^{2} (x) + \sin(x)  - 1 = 0    \\

  \\ \implies \bf  \sin(x)   =  \dfrac{ - (1) \pm \sqrt{ {(1)}^{2}  - 4(1)( - 1)} }{2}   \\

  \\ \implies \bf  \sin(x)   =  \dfrac{ - (1) \pm \sqrt{5} }{2}   \\

  \\ \implies \large{ \boxed{ \bf  \sin(x)   =  \dfrac{ - 1  +  \sqrt{5} }{2}}}\\

 \\ \rule{220}{2} \\

Similar questions