Math, asked by jegathakannan01, 2 months ago

please say the correct answer please ​

Attachments:

Answers

Answered by CɛƖɛxtríα
119

Answer:

The another rational number is -10/9.

Step-by-step explanation:

{\underline{\underline{\bf{Given:}}}}

  • The sum of two rational numbers is -4/9.
  • One of them is 2/3.

{\underline{\underline{\bf{To\:find:}}}}

  • The other rational number.

{\underline{\underline{\bf{Solution:}}}}

Let: The another rational number be 'x'.

\:

According to the question:

We can form an equation to find the value of 'x' i.e, the another rational number.

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎\small\underline{\boxed{\bf{\dfrac{2}{3}+x=\dfrac{-4}{9}}}}

\:

Now:

By solving the equation formed,

\:

\:\:\:\:\:\:\::\implies{\sf{ \bigg(\dfrac{2}{3}+x \bigg)=\dfrac{-4}{9}}}

\\

Transposing the like terms in L.H.S to R.H.S (subtraction)-

\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{x=\bigg(\dfrac{-4}{9}-\dfrac{2}{3}\bigg)}}

\\

Simplifying the like terms in R.H.S-

\:

  • Multiply each side by the opposite side's denominator:

\\:\:\:\implies{\sf{x=\bigg(\dfrac{3\times -4}{3\times 9} \bigg)- \bigg(\dfrac{9\times 2}{9\times 3}\bigg)}}

\\

  • Simplifying:

\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{x=\bigg(\dfrac{-12}{27}-\dfrac{18}{27}\bigg)}}

\\

\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{x=\dfrac{\cancel{-30}}{\cancel{27}}}}

\\

We got,

\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\boxed{\frak{\red{x=\dfrac{-10}{9}}}}}

{\underline{\underline{\bf{Verification:}}}}

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎To verify, substitute the obtained value of 'x' in place of 'x' in the formed equation:

\:

\:\:\:\:\:\:\mapsto{\sf{\dfrac{2}{3}+\purple{x}=\dfrac{-4}{9}}}

\\

\:\:\:\:\:\:\mapsto{\sf{\dfrac{2}{3}+\purple{\dfrac{-10}{9}}=\dfrac{-4}{9}}}

 \: \:\:\:\:\ \\ \mapsto{\sf{\bigg(\dfrac{9\times 2}{9\times 3}\bigg)+\bigg(\dfrac{-10\times 3}{9\times 3}\bigg)=\dfrac{-4}{9}}}

\\

\:\:\:\:\:\:\mapsto{\sf{\bigg(\dfrac{18}{27}+\dfrac{-30}{27}\bigg)=\dfrac{-4}{9}}}

\\

\:\:\:\:\:\:\mapsto{\sf{\bigg(\dfrac{18-30}{27}\bigg)=\dfrac{-4}{9}}}

\\

\:\:\:\:\:\:\mapsto{\sf{\dfrac{\cancel{-12}}{\cancel{27}}=\dfrac{-4}{9}}}

\\

\:\:\:\:\:\:\mapsto{\bf{\dfrac{-4}{9}=\dfrac{-4}{9}}}

\\

\:\:\:\:\:\:\mapsto{\sf{L.H.S.=R.H.S.}}

\:\:\:\:\:\:\\\mapsto{\sf{Hence,\:the\:value\:of\:x\:is\:correct!}}

__________________________________________

Answered by Anonymous
6

AnswEr-:

  • \boxed{\sf{\large {  The\:number\:is\:= \dfrac{-10}{9}}}}

EXPLANATION-:

  • \dag{\sf{\large { Given -:\:}}}

  • The sum of two rational numbers is -4/9 .
  • If one of them is 2/3 .

  • \dag{\sf{\large { To\:Find -:\:}}}

  • The other rational number .

\dag{\sf{\large { Solution -:\:}}}

  • \dag{\sf{\large { Let's \: Assume-:\:}}}

  • The other rational number be x .

\dag{\sf{\large { Then -:\:}}}

  • \boxed{\sf{\large { Equation \: Formed\: \: = x + \dfrac{2}{3}=\dfrac{-4}{9}}}}

\dag{\sf{\large { Now , \: Soving \:for\: x-:\:}}}

  • \longrightarrow{\sf{\large { \left(x + \dfrac{2}{3}\right)=\dfrac{-4}{9}}}}

  • \star{\sf{\large { By \: Transforming \:\dfrac{2}{3} \:to \:RHS}}}

  • \longrightarrow{\sf{\large { x = \left( \dfrac{-4}{9}- \dfrac{2}{3}\right)}}}

  • \star{\sf{\large { LCM \:of\:3\:and\:9\:is\:9 .}}}

  • \longrightarrow{\sf{\large { x =\left(  \dfrac{-4- 6}{9} \right)}}}

  • \longrightarrow{\sf{\large { x =  \dfrac{-10}{9}}}}

\dag{\sf{\large { Now -:\:}}}

  • \boxed{\sf{\large { x =  \dfrac{-10}{9}}}}

\dag{\sf{\large { Then -:\:}}}

  • \dag{\sf{\large { Putting \:-:\:x =  \dfrac{-10}{9}}}}

  • The number is \implies{\sf{\large { x =  \dfrac{-10}{9}}}}

\dag{\sf{\large { Hence -:\:}}}

  • \boxed{\sf{\large {  The\:number\:is\:= \dfrac{-10}{9}}}}

__________________________________

\dag{\sf{\large { Verification -:\:}}}

  • \boxed{\sf{\large { Equation \: \: \: = x + \dfrac{2}{3}=\dfrac{-4}{9}}}}

\dag{\sf{\large { Here -:\:}}}

  • \longrightarrow{\sf{\large { x =  \dfrac{-10}{9}}}}

\dag{\sf{\large { Now -:\:}}}

  • Putting x = -10/9 in Equation-:

  • \longrightarrow{\sf{\large { \left(\dfrac{-10}{9} + \dfrac{2}{3}\right)=\dfrac{-4}{9}}}}

  • \star{\sf{\large { LCM \:of\:3\:and\:9\:is\:9 .}}}

  • \longrightarrow{\sf{\large { \left(\dfrac{-10+6}{9} \right)=\dfrac{-4}{9}}}}

  • \longrightarrow{\sf{\large { \dfrac{-4}{9} =\dfrac{-4}{9}}}}

\dag{\sf{\large { Therefore-:\:}}}

  • \boxed{\sf{\large {  LHS = RHS}}}

  • \boxed{\sf{\large {  Hence,\: Verified. }}}

______________________♡________________________

Similar questions