Math, asked by sulekhasshetty173, 3 months ago

Please say the solution in book ​

Attachments:

Answers

Answered by arthkunder33
2

3/x-1-2/x-2=1/x-3

∴3/x-2/x-3=1/x-3

∴3-2/x-3=1/x-3

=0

Please mark me as brainliest.

I think you are from karnataka. I can find out by your name.

Answered by Anonymous
7

Explanation :

 \longrightarrow \rm  \:  \dfrac{3}{x - 1}  -  \dfrac{2}{x - 2}  =  \dfrac{1}{x - 3}  \\  \\  \\  \longrightarrow \rm  \: \dfrac{3}{x - 1}  -  \dfrac{2}{x - 2}   -  \dfrac{1}{x - 3}   = 0 \\  \\  \\ \longrightarrow \rm  \: \dfrac{3(x - 2) \times (x - 3) - 2(x - 1) \times (x - 3) - 1(x - 1)(x - 2) }{(x - 1) \times (x - 2) \times (x - 3)}  = 0 \\  \\  \\ \longrightarrow \rm  \: \dfrac{(3x - 6) \times (x - 3)  + ( - 2x  +  1) \times (x - 3) - (x {}^{2}  - 2x - x + 2) }{(x - 1) \times (x - 2) \times (x - 3)}  = 0 \\  \\  \\ \longrightarrow \rm  \: \dfrac{3x {}^{2} - 9x - 6x + 18 - 2x {}^{2}  + 6x + 2x - 6 - (x {}^{2} - 3x + 2 ) }{(x - 1) \times (x - 2) \times (x - 3)}  = 0 \\  \\  \\ \longrightarrow \rm  \: \dfrac{3x {}^{2} - 9x - 6x + 18 - 2x {}^{2}  + 6x + 2x - 6  - x {}^{2} +   3x  -  2  }{(x - 1) \times (x - 2) \times (x - 3)}  = 0 \\  \\  \\  \longrightarrow \rm \dfrac{0 - 4x + 10}{(x - 1) \times (x - 2) \times (x - 3)}  = 0 \\  \\  \\  \longrightarrow \rm  - 4x + 10 = 0 \times (x - 1) \times ( x- 2) \times x - 3) \\  \\  \\ \longrightarrow \rm  - 4x + 10 = 0 \\  \\  \\ \longrightarrow \rm   - 4x =  - 10  \\  \\  \\ \longrightarrow \rm  x =  \dfrac{ \not{ - }10}{ \not{ -} 4}  \\  \\  \\ \longrightarrow  \red{\rm   x =  \dfrac{5}{2} }

Similar questions