Math, asked by tirthankarroy420, 1 year ago

Please See the Question​

Attachments:

Answers

Answered by DIVINEREALM
334

\huge{\bold{\boxed{\boxed{\mathfrak{\red{ANSWER}}}}}}

\textsf{2x^5 - 16x^4 -5x^3+ 2x + 13}

\huge{\bold{\boxed{\boxed{\mathbb{\red{EXPLANATION}}}}}}

(8-3x³+5x⁴)+(7x³-5x⁴+8x)+(7-16x⁴-9x³)+(2x⁵-6x-2)

= 8+7-2-3x³+7x³-9x³+5x⁴-5x⁴-16x⁴+8x-6x + 2x⁵

\mathbf{\underline{\underline{Step:-putting\:like\:terms\:together}}}

= (8+7-2) + (-3x³+7x³-9x³) + (5x⁴-5x⁴-16x⁴) + (8x-6x) + 2x⁵

= (13) + (-5x³) + (-16x⁴) + (2x) + 2x⁵

= 2x⁵+ (-16x⁴)+ (-5x³)+ (2x) + 13

= 2x⁵- 16x⁴-5x³+ 2x + 13

\huge\text{\underline{\underline{NOTE:-}}}

→In simplifying an equation in algebra, we can only add (or subtract) like terms { terms those with the same letter raised to the same power }

Or Like terms are terms that contain the same variables raised to the same power.

\huge\text{\underline{\underline{EXAMPLE:-}}}

{3x^2}  and {7x^2} are like terms.

{6x^2} and {9y^2}  are not like terms, because the variable is not the same.

{7x^2} and {7x^3} are not like terms, because here the power is not the same though the variable is same.


DIVINEREALM: thankaa mam :)
TheKingOfKings: great
Anonymous: yup !!
DIVINEREALM: tYSm .. :)
DIVINEREALM: tHXx ❤❤
Jayaqueen: What a answer dear .... it's awesome
DIVINEREALM: tysm dear
Jayaqueen: Wello ✌✌
Answered by Anonymous
61

\huge{\textsc{\red{Your\:Answer}}}}

\mathtt{\colorbox{\red{2x^5 - 16x^4 -5x^3+ 2x + 13}}}}}}

\huge{\boxed{\boxed{\textsl{\red{EXPLANATION}}}}}

(8-3x³+5x⁴)+(7x³-5x⁴+8x)+(7-16x⁴-9x³)+(2x⁵-6x-2)

\mathtt{\green{= 8+7-2-3x^3+7x^3- 9x^3+ 5x^4 - 5x^4 - 16x^4 + 8x-6x + 2x^5 }}}}

\mathbf{= (8+7-2) + (-3x^3 + 7x^3 - 9x^3) + (5x^4 - 5x^4 - 16x^4) + (8x-6x) + 2x^5 }

\mathtt{= 13+ (-5x^3) + (- 16x^4)+ 2x + 2x^5}}}}

\mathtt{\green{= 2x^5 + (- 16x^4) + (-5x^3) + 2x + 13}}}}

\mathtt{\colorbox{\green{= 2x^5 - 16x^4 -5x^3+ 2x + 13}}}}


Anonymous: lol4
Anonymous: thx fashion g :)
DIVINEREALM: lol5
DIVINEREALM: XD
DIVINEREALM: lol infinite2
DIVINEREALM: . (☺️‿◠)
Similar questions