Math, asked by Tharani123, 1 year ago

please send fast today is my test.

Attachments:

Answers

Answered by nikhil400
2
HEY UR ANSWER IS HERE....
Attachments:
Answered by DaIncredible
0
Hey Friend,
Here is the answer you were looking for:
 \frac{22}{2 \sqrt{3}  + 1}  +  \frac{17}{2 \sqrt{3}  - 1}  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{22}{2 \sqrt{3}  + 1}  \times  \frac{2 \sqrt{3} - 1 }{2 \sqrt{3}  - 1}  +  \frac{17}{2 \sqrt{3}  - 1}  \times  \frac{2 \sqrt{3}  + 1}{2 \sqrt{3} + 1 }  \\  \\  using \: the \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{22 \times 2 \sqrt{3} - 22 \times 1 }{ {(2 \sqrt{3}) }^{2} -  {(1)}^{2}  }  +  \frac{17 \times 2 \sqrt{3} + 17 \times 1 }{ {(2 \sqrt{3} )}^{2} -  {(1)}^{2}  }  \\   \\  =  \frac{44 \sqrt{3} - 22 }{12 - 1}  +  \frac{3 \sqrt{3} + 17 }{12 - 1}  \\  \\  =  \frac{44 \sqrt{3} - 22 }{11}  +  \frac{3 \sqrt{3} + 17 }{11}  \\  \\  = 4 \sqrt{3}  - 2 +  \frac{3 \sqrt{3} + 17 }{11}

Hope this helps!!!!

@Mahak24

Thanks....
☺☺
Similar questions