Math, asked by AbhishekTungala, 1 year ago

please send me answer

Attachments:

Answers

Answered by gaurav2013c
2

 \frac{ { \sin(15) }^{2}  +  { \sin(75) }^{2} }{ { \cos(36)  }^{2}  +  { \cos(54) }^{2} }  \\  \\  =  \frac{ { \cos(90 - 15) }^{2} +  { \sin(75) }^{2}  }{ { \sin(90 - 36) }^{2}  +  { \cos(54) }^{2} }  \\  \\  =  \frac{ { \cos(75) }^{2} +  { \sin(75) }^{2}  }{ {  \sin(54) }^{2} +  { \cos(54) }^{2}  }  \\  \\  =  \frac{1}{1}  \\  \\  = 1
Answered by siddhartharao77
1

Given Equation is sin^(25) + sin^2(75)/cos^2(36) + cos^2(54)

= > sin^2(90 - 75) + sin^2(75)/cos^2(90 - 54) + cos^2 (54)

= > cos^2(75) + sin^2(75)/sin^2(54) + cos^2(54)

We know that sin^2A + cos^2A = 1.

= > 1/1

= > 1.

Hope this helps!

Similar questions