Math, asked by abhaiasngh, 9 months ago

please send me the answer​

Attachments:

Answers

Answered by sharvanikulkarni
1

Step-by-step explanation:

refer to attachment...

Attachments:
Answered by spacelover123
3

\sf  \dfrac{3^{-4}\times 6^{-3}\times 25  }{10^{-2}\times 16 \times 3^{-6} } \times (6\dfrac{1}{4})^{-2}\times (\dfrac{1}{6})^{-1}

First of all, we need to represent all numbers in exponential form.

\sf \dfrac{3^{-4}\times 6^{-3}\times 5^{2}   }{10^{-2}\times 4^{2}  \times 3^{-6} } \times (6\dfrac{1}{4})^{-2}\times (\dfrac{1}{6})^{-1}

\sf  \dfrac{3^{-4}\times 2^{-3}\times3^{-3}\times  5^{2}   }{5^{-2}\times 2^{-2} \times 2^{4}  \times 3^{-6} } \times (6\dfrac{1}{4})^{-2}\times (\dfrac{1}{6})^{-1}

Now we will rearrange the numbers.

\sf \dfrac{3^{-4}\times3^{-3}\times 2^{-3}\times  5^{2}   }{3^{-6} \times 2^{-2} \times 2^{4}  \times  5^{-2} } \times (6\dfrac{1}{4})^{-2}\times (\dfrac{1}{6})^{-1}

We will apply these laws next ⇒

  • \sf a^m\times a^n=a^{m+n}
  • \sf a^m\div a^n = \dfrac{a^m}{a^n}  = a^{m-n}

\sf \dfrac{3^{(-4+-3)}\times2^{-3}\times  5^{2}   }{3^{-6} \times 2^{(-2+4)} \times 5^{-2} } \times (6\dfrac{1}{4})^{-2}\times (\dfrac{1}{6})^{-1}

\sf \dfrac{3^{-7}\times2^{-3}\times  5^{2}   }{3^{-6} \times 2^{2} \times 5^{-2} } \times (6\dfrac{1}{4})^{-2}\times (\dfrac{1}{6})^{-1}

\sf (3^{-7-(-6)}\times2^{-3-2}\times  5^{2-(-2)}   )  \times (6\dfrac{1}{4})^{-2}\times (\dfrac{1}{6})^{-1}

\sf (3^{-7+6}\times2^{-3-2}\times  5^{2+2}   )  \times (6\dfrac{1}{4})^{-2}\times (\dfrac{1}{6})^{-1}

\sf (3^{-1}\times2^{-5}\times  5^{4}   )  \times (6\dfrac{1}{4})^{-2}\times (\dfrac{1}{6})^{-1}

Now we will apply this law next ⇒

  • \sf a^{-m}=\frac{1}{a^m}

\sf (\dfrac{1}{3} \times\dfrac{1}{32} \times  625   )  \times (6\dfrac{1}{4})^{-2}\times (\dfrac{1}{6})^{-1}

Now we have to convert mixed fraction to improper fraction.

\sf (\dfrac{1}{3} \times\dfrac{1}{32} \times  625   )  \times (\dfrac{25}{4})^{-2}\times (\dfrac{1}{6})^{-1}

Now we will apply this law next ⇒

  • \sf a^{-m}=\frac{1}{a^m}

\sf (\dfrac{1}{3} \times\dfrac{1}{32} \times  625   )  \times (\dfrac{4}{25})^{2}\times (6)

\sf (\dfrac{1}{3} \times\dfrac{1}{32} \times  625   )  \times (\dfrac{16}{625})\times (6)

\sf (\dfrac{1}{96} \times  625   )  \times (\dfrac{16}{625})\times (6)

\sf \dfrac{625}{96}     \times \dfrac{16}{625}\times 6

\sf \dfrac{1}{96}     \times 16 \times 6

\sf \dfrac{1}{96}      \times 96

\sf 1

\sf \bf   \dfrac{3^{-4}\times 6^{-3}\times 25  }{10^{-2}\times 16 \times 3^{-6} } \times (6\dfrac{1}{4})^{-2}\times (\dfrac{1}{6})^{-1}=1

Similar questions