please send me the answer fast
Attachments:
Answers
Answered by
0
Answer:
\frac{\left(x^m+n\right)^2\left(x^n+p\right)^2\left(x^p+m\right)^2}{\left(x^mx^nx^p\right)^3}=\frac{\left(x^m+n\right)^2\left(x^n+p\right)^2\left(x^p+m\right)^2}{x^{3\left(m+n+p\right)}}
= \frac{\left(x^m+n\right)^2\left(x^n+p\right)^2\left(x^p+m\right)^2}{\left(x^mx^nx^p\right)^3}
= \frac{\left(x^m+n\right)^2\left(p+x^n\right)^2\left(x^p+m\right)^2}{\left(x^{m+n+p}\right)^3}
= \frac{\left(x^m+n\right)^2\left(p+x^n\right)^2\left(x^p+m\right)^2}{x^{3\left(p+m+n\right)}}
If u did not understand this, refer to
https://www.symbolab.com/solver?or=gms&query=(x%5Em%2Bn)%5E2*(x%5En%2Bp)%5E2*(x%5Ep%2Bm)%5E2%2F(x%5Em*x%5En*x%5Ep)%5E3
Hope this helps u :)
Plz give me brainliest if u want
I need only 2 more
Have a nice day :)
Similar questions