Math, asked by ItzAshi, 2 months ago

Please send me the solution of this question​

Attachments:

Answers

Answered by senboni123456
20

Step-by-step explanation:

We have,

 \bigg( \sqrt{ \frac{x}{3} }   -  \frac{ \sqrt{3} }{2x} \bigg) ^{12}  \\

\tt{General \:\:term \:\:of\:\: the\:\: given \:\:expression\:\: is}

t_{r + 1} =  \:^{12}C_{r} \bigg( \sqrt{ \frac{x}{3} }  \bigg)^{ 12 - r}. \bigg(  \frac{ \sqrt{3} }{2x}  \bigg)^{r}  \\

 \implies \: t_{r + 1} =  \:^{12}C_{r} \bigg(\frac{x}{3}  \bigg)^{  \frac{12 - r}{2}}.   \frac{ (\sqrt{3} )^{r} }{2 ^{r}. x^{r} }    \\

 \implies \: t_{r + 1} =  \:^{12}C_{r} \bigg(\frac{x}{3}  \bigg)^{  6 - \frac{ r}{2}}.   \frac{ (3 )^{ \frac{r}{2} } }{2 ^{r}. x^{r} }    \\

 \implies \: t_{r + 1} =  \:^{12}C_{r} (x)^{  6 - \frac{ r}{2}}. {3}^{ (\frac{r}{2}  - 6)} .   \frac{ (3 )^{ \frac{r}{2} } }{2 ^{r}. x^{r} }    \\

 \implies \: t_{r + 1} =  \:^{12}C_{r} (x)^{  6 - \frac{ r}{2} - r}. {3}^{ (\frac{r}{2}  - 6 +  \frac{r}{2} )} .   2 ^{ - r}    \\

 \implies \: t_{r + 1} =  \:^{12}C_{r} (x)^{  6 - \frac{ 3r}{2}}. {3}^{ (r  - 6 )} .   2 ^{ - r}    \\

For term independent of x, we must have, 6-\frac{3r}{2}=0\\

So,  r=4

So, the required term is

 \implies \: t_{4 + 1} =  \:^{12}C_{4} (x)^{  6 - \frac{ 3 \times 4}{2}}. {3}^{ (4  - 6 )} .   2 ^{ - 4}    \\

 \implies \: t_{5} =  \:^{12}C_{4} . {3}^{  - 2} .   2 ^{ - 4}    \\

 \implies \: t_{5} = \frac{  \:^{12}C_{4} }{ {3}^{ 2} .   2 ^{ 4} }   \\

 \implies \: t_{5} = \frac{  12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1 \times  9  \times   16 }   \\

 \implies \: t_{5} = \frac{  12 \times 11 \times 10 }{12 \times 2 \times 1   \times   16 }   \\

 \implies \: t_{5} = \frac{  11 \times 10 }{ 2 \times 1   \times   16 }   \\

 \implies \: t_{5} = \frac{  11 \times 5 }{ 1   \times   16 }   \\

 \implies \: t_{5} = \frac{  55 }{  16 }   \\

Similar questions