Math, asked by kmaninder001, 4 months ago

please send solution ​

Attachments:

Answers

Answered by Saby123
5

 \displaystyle \sf{ \bold { Solution \: - }} \\ \\ \sf{ \bold { \star To \: Show \: - }} \\ \\ \sf{ \implies { \bold { \dfrac{ x^{p(q-r)} }{ x^{q(p-r)}} \div \dfrac{ x^{qr} }{ x^{pr} } = 1 }}} \\ \\ \sf{ \implies { \bold { \dfrac{ x^{(pq-pr)} }{ x^{(pq-qr)} } \div \dfrac{ x^qr }{ x^pr } }}} \\ \\ \sf{ \implies { \bold { x^{(pq - pr - pq + qr )} \times x^{(pq - pr )}  }}} \\ \\ \sf{ \implies { \bold { x^{( qr - pr + pr - qr )} }}} \\ \\ \sf{ \bold { \implies { 1 }}} \\ \\ \sf{ Hence \: Shown }

_______________________________________

Additional Information :

( x^ a ) × ( x^ b ) = x^( a + b)

( x^ a )/ ( x^ b ) = x^( a - b )

a^0 = 1

( x^ a ) ^ b = x^( ab )

_______________________________________

Answered by mathdude500
5

\large\underline\blue{\bold{Given \:  Question :-  }}

\sf \:  Show  \:that \: \dfrac{ {x}^{p(q - r)} }{ {x}^{q(p - r)} }  \div \ {(\dfrac{ {x}^{q} }{ {x}^{p} }) }^{r}  = 1

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Given :-  }}

\sf \:  \dfrac{ {x}^{p(q - r)} }{ {x}^{q(p - r)} }  \div \ {(\dfrac{ {x}^{q} }{ {x}^{p} }) }^{r}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{To \:  Show  :-  }}

  • Value is 1

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{ Identity\:  Used  :-  }}

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\red{ {x}^{0}  = 1}}}}} \\ \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \:  \dfrac{ {x}^{p(q - r)} }{ {x}^{q(p - r)} }  \div \ {(\dfrac{ {x}^{q} }{ {x}^{p} }) }^{r}

\sf \:  ⟼\dfrac{ {x}^{(pq - pr)} }{ {x}^{(qp - qr)} }  \div \  { {x}^{(q - p)r} }

\sf \:  ⟼ {x}^{(pq - pr - pq + qr)}  \div  {x}^{qr - pr}

\sf \:  ⟼ {x}^{( \cancel{pq} - pr -  \cancel{pq} + qr)}  \div  {x}^{qr - pr}

\sf \:  ⟼ {x}^{( - pr + qr)}  \div  {x}^{qr - pr}

\sf \:  ⟼ {x}^{( - pr + qr  - (qr - pr))}

\sf \:  ⟼ {x}^{( - pr + qr   - qr  +  pr)}

\sf \:  ⟼ {x}^{( \cancel{ - pr}   +  \cancel{qr} -  \cancel{qr} +  \cancel{pr})}

\sf \:  ⟼ {x}^{0}  = 1

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions