Math, asked by NandiniJagadi, 9 months ago

please send solution also​

Attachments:

Answers

Answered by CharmingPrince
1

Answer:

Given:

\dfrac{\sqrt3 - 1}{\sqrt3+1} =  a + b\sqrt3

Solution:

\implies \dfrac{\sqrt3 - 1}{\sqrt3 + 1} = a + b\sqrt3

\implies \dfrac{\sqrt3-1}{\sqrt3 + 1} \times \dfrac{\sqrt3 - 1}{ \sqrt3 - 1} = a + b\sqrt3

\implies \dfrac{(\sqrt3 - 1)^2}{(\sqrt3)^2 - 1^2} = a + b \sqrt3

\implies \dfrac{3 + 1 - 2\sqrt3}{3 - 1} = a + b \sqrt3

\implies \dfrac{4-2\sqrt3}{2} = a + b \sqrt3

\implies 2 - \sqrt3 = a+b \sqrt3

\boxed{\implies{\boxed{a = 2 , \ b = - 1}}}

Similar questions