Math, asked by vsjdosbdv, 10 months ago

please send the ans please​

Attachments:

Answers

Answered by Cynefin
25

━━━━━━━━━━━━━━━━━━━━━━

Answer

♦️GiveN

  • Side of Rhombus = 6 cm
  • Altitude of Rhombus= 4 cm
  • One of the diagonal = 8 cm

♦️To FinD

  • Find the other diagonal?

━━━━━━━━━━━━━━━━━━━━━━

Solution

☛Since rhombus is a type of parallogram,

 \large{ \boxed{ \green{ \tt{area \: of \: rhombus = base \times heighe}}}}

Putting the Given values of Base (side)= 6 cm

And, the value of Altitude(Height) = 4 cm

Area of rhombus,

 \large{ \tt{ = base \times height}} \\  \\  \large{ \tt{ = 6 \: cm \times 4 \: cm}} \\  \\  \large{ = \boxed{ \tt{24 \:  {cm}^{2} }}}

♦️Area of Rhombus = 24 cm^2

Now, Finding the length of Diagonal:

We have, one of the diagonal = 8 cm

Let another diagonal be d2,

 \large{ \boxed{ \green{ \tt{area \: of \: rhombus =  \frac{1}{2}  \times (product \: of \: diagonals)}}}}

By using this,

 \large{ \tt{ \rightarrow \: area \: of \: rhombus =  \frac{1}{ \cancel{2}}  \times  \cancel{8 } \:  \: 4 \: \times d2}} \\  \\  \large{ \sf{ \rightarrow \: 24 \:  {cm}^{2}  = 4 \: cm \times d2}} \\  \\  \large{ \tt{ \rightarrow \: \boxed{ \purple { \tt{d2 = 6cm}}}}}

Length of other daigonal = 6 cm

━━━━━━━━━━━━━━━━━━━━━━

Refer the attachment for diagram.

Attachments:
Answered by amitkumar44481
14

Question :

Find the area of rhombus whose sides is 6 cm and whose altitude is 4 cm. If one of its diagonal is 8 cm long, Find the length of other diagonal.

Given :

  • Sides of rhombus is 6 Cm.
  • And altitude is 4 Cm.
  • One Its diagonals is 8 Cm.

To Find :

  • Length of other diagonal.
  • Area of rhombus.

Solution :

Condition,

  • When we added area both triangle i.e, triangle BCD and triangle DAB we get Area of Rhombus.
  • CM altitude of rhombus. ( 90° )

 \tt \dagger  \:  \:  \:  \:  \: Area  \: of \:  \triangle BCD +Area \:  of \:  \triangle  DAB = Area  \: of \:  Rhombus.

 \tt \longmapsto Area_R = 2 \times  \dfrac{1}{2}  \times base \times height

 \tt \longmapsto Area_R = \cancel{2} \times  \dfrac{1}{ \cancel2}  \times 6 \times4.

 \tt \longmapsto Area_R = 6 \times 4.

 \tt\longmapsto Area_R = 24 \: c {m}^{2} .

\rule{90}1

Now,

Let,

  • D1 ( one diagonal )
  • D2 ( Other diagonal )

 \tt \dagger \:  \:  \:  \:  \:  Area \:  of \:  Rhombus = \dfrac{1}{2}  \times D_1 \times D_2.

 \tt \longmapsto Area_R = \dfrac{1}{\cancel2}  \times \cancel8 \times  D_2.

 \tt \longmapsto 24= 4 \times  D_2.

 \tt\longmapsto  \dfrac{\cancel{24}}{\cancel4}  =   D_2.

 \tt \longmapsto D_2= 6 \: cm.

Therefore, the area of Rhombus is 24 cm² and its other diagonal is 6 Cm.

Attachments:
Similar questions