Math, asked by alok268kumar, 10 months ago

Please send the solution

Attachments:

Answers

Answered by itzvishuhere
4

Heya mate!!

x = 3 + 2 \sqrt{2}  \\ its \: square \: root \\  \sqrt{3 + 2 \sqrt{2} }  \\ \\  \sqrt{ {1 +  \sqrt{2} }^{2} }  \\ 1 +  \sqrt{2}

x = 1 +  \sqrt{2}  \\  \frac{1}{x}  =  \frac{1}{1 +  \sqrt{2} }  \\  \frac{1}{1 +  \sqrt{2} }  \times  \frac{1 -  \sqrt{2} }{1 -  \sqrt{2} }  \\  \frac{1 -  \sqrt{2} }{ - 1}  =  - 1 +  \sqrt{2}

x -  \frac{1}{x}  \\ 1 +  \sqrt{2}  - ( - 1 +  \sqrt{2} ) \\ 1 +  \sqrt{2}  + 1 -  \sqrt{2}  \\ 2

Hope it helps u dear✌️

Answered by Anonymous
3

GIVEN:

 x =3+2\sqrt{2}

TO FIND:

\sqrt{x}-\dfrac{1}{\sqrt{x}}

ANSWER:

We have,

=> x =3+2\sqrt{2}

On putting square root both sides, we have,

=>\sqrt{x}=\sqrt{3+2\sqrt{2}}

=>\sqrt{x}=\sqrt{2+1+2\sqrt{2}}

=>\sqrt{x}=\sqrt{\sqrt{(2)^{2}}+1+2\sqrt{2}}

=>\sqrt{x}=\sqrt{\sqrt{(2)^{2}}+1+2×1×\sqrt{2}}

\large\red{\boxed{(a+b)^{2}=a^{2}+b^{2}+2ab}}

=>\sqrt{x} = \sqrt{(\sqrt{2}+1) ^{2}}

=>\sqrt{x}=\sqrt{2}+1

\large\green{\boxed{\sqrt{x}=\sqrt{2}+1}}

______________________________________

Now,

\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{2}+1}

On rationalizing the denominator,

=>\dfrac{1}{\sqrt{x}}=\dfrac{1\times(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}

=>\dfrac{1}{\sqrt{x}}=\dfrac{(\sqrt{2}-1)}{(\sqrt{2})^{2}-(1)^{2}}

\large\purple{\boxed{(a+b)(a-b)=a^{2}-b^{2}}}

=>\dfrac{1}{\sqrt{x}}=\dfrac{(\sqrt{2}-1)}{2-1}

=>\dfrac{1}{\sqrt{x}}=\dfrac{(\sqrt{2}-1)}{1}

\large\blue{\boxed{\dfrac{1}{\sqrt{x}}=(\sqrt{2}-1)}}

_____________________________________

Now,

\sqrt{x}-\dfrac{1}{\sqrt{x}}

=\sqrt{2}+1-(\sqrt{2}-1)

=\sqrt{2}+1-\sqrt{2}+1

= 2

Hence , \sqrt{x}-\dfrac{1}{\sqrt{x}}=2

\huge\orange{\boxed{.°.\sqrt{x}-\dfrac{1}{\sqrt{x}}=2}}

Similar questions