Math, asked by dhaygudeshreya, 7 months ago

please show me the answer
please please please please please ​

Attachments:

Answers

Answered by prince5132
13

GIVEN :-

  • (√5 - √3)/(√5 + √3)

TO RATIONALIZE :-

  • (√5 - √3)/(√5 + √3)

RATIONALIZATION :-

 \\ :   \implies \displaystyle \sf \:  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }  \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \footnotesize \displaystyle  \dag \:  \mathfrak{On \:  Rationalizing \:  we \:  get,} \\  \\

:   \implies \displaystyle \sf \:  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }  \times  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{ \big( \sqrt{5}  -  \sqrt{3}  \big) \big( \sqrt{5} -  \sqrt{3}   \big)}{ \big( \sqrt{5} +  \sqrt{3} \big) \big( \sqrt{5}  -  \sqrt{3}  \big) }  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{ \big( \sqrt{5} -  \sqrt{3} \big) ^{2}   }{ \big( \sqrt{5}  \big)^{2}   -  \big( \sqrt{3}  \big) ^{2} }  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{ \big( \sqrt{5} \big) ^{2} +  \big( \sqrt{3}  \big)^{2} - 2 \times  \sqrt{5}  \times  \sqrt{3}}{ \sqrt{25}  -  \sqrt{9} }  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{ \sqrt{25}   +  \sqrt{9}  - 2 \sqrt{15} }{5 - 3}  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{5 + 3 - 2 \sqrt{15} }{2}  \\  \\  \\

:   \implies  \underline{ \boxed{\displaystyle \sf \:  \bold{ \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }  = \frac{8 - 2 \sqrt{15} }{2} }}}


EliteSoul: Nice
BrainlyPopularman: Awesome
MisterIncredible: Good !
Answered by Anonymous
159

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large\boxed{\sf{Rationalize\:denominator\:\displaystyle\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\sf{\displaystyle\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{8-2\sqrt{15}}{2}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\sf{\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}}

\sf{\mathrm{Multiply\:by\:the\:conjugate}\:\displaystyle\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

\sf{\displaystyle=\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}}

Why ?

To rationalize the denominator, multiply numerator and denominator by the conjugate of the radical \sf{ \sqrt{5}+\sqrt{3}}

_________________________

Solve : \sf{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}

\sf{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}

\sf{=\left(\sqrt{5}-\sqrt{3}\right)^2}

\sf{\text { Apply Perfect Square Formula: }(a-b)^{2}=a^{2}-2 a b+b^{2}}

\sf{=\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}

\sf{=5-2\sqrt{5}\sqrt{3}+3}

\boxed{\sf{=8-2\sqrt{15}}}

_________________________

Solve : \sf{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}

\begin{aligned}&\sf{\text { Apply Difference of Two Squares Formula: }(a+b)(a-b)=a^{2}-b^{2}}\\\\&\sf{a=\sqrt{5}, b=\sqrt{3}}\end{aligned}

\sf{=\left(\sqrt{5}\right)^2-\left(\sqrt{3}\right)^2}

\sf{=5-3}

\boxed{\sf{=2}}

_________________________

\sf{\displaystyle\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}}

\large\boxed{\sf{=\displaystyle\frac{8-2\sqrt{15}}{2}}}


EliteSoul: Great
BrainlyPopularman: Awesome
Draxillus: Splendid,Keep working.
MisterIncredible: Good !
Anonymous: Fantastic!
Similar questions