Please show your work!!!
PLEASE DONT TYPE RANDOM THINGS PLEASE!!!
Answers
Answer:
Using angle sum property of a triangle in ∆ABC:
∠A + ∠B + ∠C = 180º
=> ∠A + 64º + 49º = 180º
=> ∠A = 67º
Now, given that ∆ABC ~ ∆PQR:
∠A = ∠P = 67º
∠B = ∠Q = 64º
∠C = ∠R = 49º
(using AAA criterion of similarity)
The ratio of corresponding sides is equal if two triangles are similar. Using this:
Now,
=>
=> AB = 38 in
Similarly,
=>
=> AC = 45 in
Now, perimeter of ∆ABC:
AB + BC + AC = 38 + 46 + 45 = 129 in
Given that parallelogram ABCD ~ parallelogram JKLM
=> ∠A = ∠J (corresponding angles are equal in similar parallelograms)
and ∠A = ∠C (opposite angles are equal in a parallelogram)
Now, ∠A = ∠C = ∠J = 120º
The ratio of corresponding sides is equal if two parallelograms are similar. Using this:
Now,
We also know that BC = AD = 7 ft and AB = CD = 9 ft (opposite sides of a parallelogram are equal)
=>
=> LM = 4.5 ft