Math, asked by wwwwbluesingh1234, 8 days ago

Please silve it fast ​

Attachments:

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:9\bigg( {x}^{2} + \dfrac{1}{ {x}^{2} }  \bigg) - 9\bigg(x + \dfrac{1}{x} \bigg) - 52 = 0 -  - (1)

To solve this equation, Let assume that,

 \red{\rm :\longmapsto\:x + \dfrac{1}{x} = y -  -  - (2)}

On squaring both sides, we get

 \red{\rm :\longmapsto\:{x}^{2} + \dfrac{1}{ {x}^{2}}+ 2 \times x  \times  \dfrac{1}{x} =  {y}^{2} }

 \red{\rm :\longmapsto\:{x}^{2} + \dfrac{1}{ {x}^{2}}+ 2  =  {y}^{2} }

 \red{\rm :\longmapsto\:{x}^{2} + \dfrac{1}{ {x}^{2}} =  {y}^{2}  - 2}

On substituting all these values in equation (1), we get

\rm :\longmapsto\:9( {y}^{2} - 2) - 9y - 52 = 0

\rm :\longmapsto\:9{y}^{2} - 18 - 9y - 52 = 0

\rm :\longmapsto\:9{y}^{2}  - 9y - 70 = 0

\rm :\longmapsto\:9{y}^{2}  - 30y + 21y - 70 = 0

\rm :\longmapsto\:3y(3y - 10) + 7(3y - 10) = 0

\rm :\longmapsto\:(3y + 7)(3y - 10) = 0

\rm :\implies\:y =  - \dfrac{7}{3}  \:  \:  \: or \:  \:  \: y =  \dfrac{10}{3}

Consider,

\rm :\longmapsto\:y =  - \dfrac{7}{3}

\rm :\longmapsto\:x + \dfrac{1}{x} =  - \dfrac{7}{3}

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{x} =  - \dfrac{7}{3}

\rm :\longmapsto\: {3x}^{2} + 3 =  - 7x

\rm :\longmapsto\: {3x}^{2}  + 7x+ 3 =  0

Its a quadratic equation in x, so to get the values of x, we use Quadratic Formula, given by

\boxed{ \bf{ \: x =  \frac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}}}

So, here

\rm :\longmapsto\:a = 3

\rm :\longmapsto\:b = 7

\rm :\longmapsto\:c = 3

So, on substituting the values, we get

\rm :\longmapsto\:x =  \dfrac{ - 7 \:  \pm \:  \sqrt{ {7}^{2}  - 4(3)(3)} }{2(3)}

\rm :\longmapsto\:x =  \dfrac{ - 7 \:  \pm \:  \sqrt{ 49 - 36} }{6}

\bf :\longmapsto\:x =  \dfrac{ - 7 \:  \pm \:  \sqrt{ 13} }{6}

Now, Consider

\rm :\longmapsto\:y =  \dfrac{10}{3}

\rm :\longmapsto\:x + \dfrac{1}{x} =  \dfrac{10}{3}

\rm :\longmapsto\: \dfrac{ {x}^{2}  + 1}{x} =  \dfrac{10}{3}

\rm :\longmapsto\: {3x}^{2} + 3 = 10x

\rm :\longmapsto\: {3x}^{2} - 10x + 3 = 0

\rm :\longmapsto\: {3x}^{2} - 9x - x + 3 = 0

\rm :\longmapsto\:3x(x - 3) - 1(x - 3) = 0

\rm :\longmapsto\:(x - 3)(3x - 1) = 0

\rm :\implies\:x = 3 \:  \:  \: or \:  \:  \: x = \dfrac{1}{3}

Hence,

Solution of

\rm :\longmapsto\:9\bigg( {x}^{2} + \dfrac{1}{ {x}^{2} }  \bigg) - 9\bigg(x + \dfrac{1}{x} \bigg) - 52 = 0 -  - (1)

is

\bf :\longmapsto\: \boxed{ \bf{ \: x =  \dfrac{ - 7 \:  \pm \:  \sqrt{ 13} }{6}, \: 3, \: \dfrac{1}{3} }}

Similar questions