Math, asked by brainlyTopper68, 1 month ago

please simplify this question​

Attachments:

Answers

Answered by arsh95428
2

Answer:

Hey mate ! above is your answer

Attachments:
Answered by Anonymous
3

Solution :-

 \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  +  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }

By rationalising the denominators,

 \frac{ \sqrt{5}  +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5 }  +  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}}+\frac{ \sqrt{5}  -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }  \times  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }

 \frac{ {( { \sqrt{5}  +  \sqrt{3} )} }^{2} }{5 \:  -  \: 3}  +  \frac{ {( \sqrt{5}  -  \sqrt{3} )}^{2} }{5 \:  -  \: 3}

[ By using identity :-

• ( a + b)^2 = a^2 + b^2 + 2ab

• ( a - b)^2 = a^2 + b^2 - 2ab ]

 \frac{5 + 2 \sqrt{15} + 3 }{2}  +  \frac{5 - 2 \sqrt{15}  + 3}{2}

 \frac{8 + 2 \sqrt{15} }{2}  +  \frac{8  - 2 \sqrt{15} }{2}

 \frac{8 + 2 \sqrt{15}  + 8 - 2 \sqrt{15} }{2}  \\

 = \frac{16}{2}  \\    = 8

Hence, After simplifing we get 8

Some general points :-

• This Question is solved by the method of rationalisation

• Rationalisation is technique which is generally used to avoid zero in a denominator

• We use rationalisation also to convert the roots into simple numbers in denominators.

Similar questions