Math, asked by proooooo34, 1 month ago

please slove all in a paper or book and keep pics it will be very helpful to me​

Attachments:

Answers

Answered by VεnusVεronίcα
8

(2) Simplify : 225 5 81 + 9 + ¹1024

⇒ √225 – 5 (⁴√81) + √9 + (¹⁰√1024)

⇒ 15 – 5 ( 3 ) + 3 + 2

⇒ 15 – 15 + 5

⇒ 5

(3) If x + y + z = 0, then show that + + = 3xyz.

We know the algebraic identity :

⇒ x³ + y³ + z³ + 3xyz = (x + y + z) (x² + y² + z² – xy – yz – xz)

Let's substitute the value :

⇒ x³ + y³ + z³ + 3xyz = 0 (x² + y² + z² – xy – yz – xz)

⇒ x³ + y³ + z³ + 3xyz = 0

⇒ x³ + y³ + z³ = 0 – 3xyz

⇒ x³ + y³ + z³ = – 3xyz

Hence, proved!

(4) (i) If a die is rolled once, find the probability of getting :

(A) A composite number

Composite number is a number that has more than two factors.

⇒ P (E) = Favourable outcomes/Total outcomes

⇒ P (getting a composite number) = 2/6

⇒ P (getting a composite number) = 1/3

(B) An even number

⇒ P (getting an even number) = 3/6

⇒ P (getting an even number) = 1/6

(ii) Card is drawn at random from a well shuffled pack of 52 cards. Find the probability of getting :

(A) King or queen

⇒ P (E) = Favourable outcomes/Total outcomes

⇒ P (king or queen) = 8/52

⇒ P (king or queen) = 2/13

(B) A face card

⇒ P (face card) = 12/52

⇒ P (face card) = 3/13

(5) Write abscissa and ordinate from the following points :

A (0, 2)

Abscissa = 0 ; Ordinate = 2

B (1, 5)

Abscissa = 1 ; Ordinate = – 5

C (3, 4)

Abscissa = 3 ; Ordinate = 4

D (5, 0)

Abscissa = 5 ; Ordinate = 0

(6) Write on which axis (or) on which quadrant the following points lies in :

P (0, 0) : Origin

Q (2, 1) : IV quadrant

R (3, 0) : X axis

S (0, 5) : Y axis

T (2, 2) : I quadrant

U ( 3, 5) : II quadrant

(8) Expand : (2x 3y 3z)²

We know the identity :

⇒ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

Here :

⇒ a = 2x

⇒ b = – 3y

⇒ c = – 3z

Expanding :

⇒ (2x – 3y – 3z)² = (2x)² + (– 3y)² + (– 3z)² + 2(2x)(– 3y) + 2(– 3y)(– 3z) + 2(– 3z)(2x)

⇒ (2x – 3y – 3z)² = 4x² + 9y² + 9z² – 12xy + 18yz – 12zx

(9) Factorise :

(A) 36

⇒ a² – b² = (a + b) (a – b)

⇒ (x + 4) (x – 4)

(B) 12z 45

Splitting the middle term :

⇒ z² – 12z – 45

⇒ z² – 15z + 3z – 45

⇒ z (z – 15) + 3 (z – 15)

⇒ (z – 15) (z + 3)

(10) Find the remainder when 2x² + 4x 18 is divided by x 2.

Substituting x = 2 in the polynomial :

⇒ x³ – 2x² + 4x – 18

⇒ (2)³ – 2 (2)² + 4 (2) – 18

⇒ 8 – 2 (4) + 8 – 18

⇒ 8 – 8 + 8 – 18

⇒ – 10

∴ – 10 is the remainder when x³ – 2x² + 4x – 18 is divided by x – 2.

(11) Find two irrational numbers between 2 and 3.

We know that :

⇒ 2² < 6 < 3² — 4 < 6 < 9

⇒ 2² < 7 < 3² — 4 < 7 < 9

Also :

⇒ √4 < √6 < √9 — 2 < √6 < 3

⇒ √4 < √7 < √9 — 2 < √7 < 3

So :

⇒ 2 < √6 < 3

⇒ 2 < √7 < 3

∴ The irrational numbers between 2 and 3 are √6 and √7.

(14) Find the probability of selecting a vowel from the word MATHEMATICS.

⇒ P (E) = Favourable outcomes/Total outcomes

⇒ P (a vowel) = 4/11

(15) Simplify each of the following :

(A) (3 + 3) (2 + 2)

⇒ 3(2 + √2) + √3(2 + √2)

⇒ 6 + 3√2 + 2√3 + √6

(B) (5 + 2)²

⇒ (a + b)² = a² + b² + 2ab

⇒ (√5)² + (√2)² + 2 (√5) (√2)

⇒ 5 + 2 + 2√10

⇒ 7 + 2√10

(C) (5 2) (5 + 2)

⇒ (a – b) (a + b) = a² – b²

⇒ (5)² – (√2)²

⇒ 25 – 2

⇒ 23

_____________________

N0TE : (1), (7), (12) and (13) are in the attachments.

Attachments:
Similar questions