Math, asked by sunidhi0915, 10 months ago

Please slove it ☺️♥️​

Attachments:

Answers

Answered by shadowsabers03
17

On taking \sf{x} directly as tending to infinity,

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{\log(x-c)}{\log(e^x-e^c)}=\dfrac{\log(\infty-c)}{\log(e^{\infty}-e^c)}}

For \sf{c} being smaller,

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{\log(x-c)}{\log(e^x-e^c)}=\dfrac{\log(\infty)}{\log(e^{\infty})}}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{\log(x-c)}{\log(e^x-e^c)}=\dfrac{\infty}{\infty}}

So we have to make use of L'hospital's Rule.

\displaystyle\longrightarrow\sf{\lim_{x\to a}\dfrac{f(x)}{g(x)}=\lim_{x\to a}\dfrac{f'(x)}{g'(x)}\quad\iff\quad\lim_{x\to a}\dfrac{f(x)}{g(x)}=\dfrac{0}{0}\quad OR\quad\lim_{x\to a}\dfrac{f(x)}{g(x)}=\dfrac{\pm\infty}{\pm\infty}}

So,

\longrightarrow\sf{\dfrac{d}{dx}\big[\log(x-c)\big]=\dfrac{1}{x-c}}

And,

\longrightarrow\sf{\dfrac{d}{dx}\big[\log(e^x-e^c)\big]=\dfrac{e^x}{e^x-e^c}}

Then, by L'hospital's Rule,

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{\log(x-c)}{\log(e^x-e^c)}=\lim_{x\to\infty}\dfrac{\left(\dfrac{1}{x-c}\right)}{\left(\dfrac{e^x}{e^x-e^c}\right)}}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{\log(x-c)}{\log(e^x-e^c)}=\dfrac{\displaystyle\lim_{x\to\infty}\dfrac{1}{x-c}}{\displaystyle\lim_{x\to\infty}\dfrac{e^x}{e^x-e^c}}\quad\quad\dots(1)}

We see that,

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{1}{x-c}=\dfrac{1}{\infty-c}}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{1}{x-c}=\dfrac{1}{\infty}}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{1}{x-c}=0}

And,

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{e^x}{e^x-e^c}=\dfrac{e^{\infty}}{e^{\infty}-e^c}}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{e^x}{e^x-e^c}=\dfrac{e^{\infty}}{e^{\infty}}}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{e^x}{e^x-e^c}=\dfrac{\infty}{\infty}}

Applying L'hospital's Rule,

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{e^x}{e^x-e^c}=\lim_{x\to\infty}\dfrac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(e^x-e^c)}}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{e^x}{e^x-e^c}=\lim_{x\to\infty}\dfrac{e^x}{e^x}}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{e^x}{e^x-e^c}=\lim_{x\to\infty}1}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{e^x}{e^x-e^c}=1}

Hence (1) becomes,

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\dfrac{\log(x-c)}{\log(e^x-e^c)}=\dfrac{0}{1}}

\displaystyle\longrightarrow\sf{\underline{\underline{\lim_{x\to\infty}\dfrac{\log(x-c)}{\log(e^x-e^c)}=0}}}

Hence 0 is the answer.


amitkumar44481: Great :-)
Similar questions