Math, asked by ramalakshmisivamurug, 9 months ago

please slove this message​

Attachments:

Answers

Answered by amitnrw
0

Given :     A = \left[\begin{array}{cc}a&b\\c&d\end{array}\right]     B = \left[\begin{array}{cc}p&q\\r&s\end{array}\right]    C = \left[\begin{array}{cc}k&l\\m&n\end{array}\right]

To Find : Prove  A(B + C) = AB + AC

Solution:

A(B + C) = AB + AC

LHS  = A(B + C)

=  \left[\begin{array}{cc}a&b\\c&d\end{array}\right]  (  \left[\begin{array}{cc}p&q\\r&s\end{array}\right]   +  \left[\begin{array}{cc}k&l\\m&n\end{array}\right]  )

=  \left[\begin{array}{cc}a&b\\c&d\end{array}\right]  (  \left[\begin{array}{cc}p+k&q+l\\r+m&s+n\end{array}\right]   )

= \left[\begin{array}{cc}ap+ak + br + bm &aq+al+bs + bn \\cp+ck + dr + dm &cq+cl+ds + dn\end{array}\right]

RHS = AB + AC

=  \left[\begin{array}{cc}a&b\\c&d\end{array}\right]     \left[\begin{array}{cc}p&q\\r&s\end{array}\right]   +   \left[\begin{array}{cc}a&b\\c&d\end{array}\right] \left[\begin{array}{cc}k&l\\m&n\end{array}\right]

=   \left[\begin{array}{cc}ap + br &aq + bs\\cp + dr &cq + ds\end{array}\right]   +       \left[\begin{array}{cc}ak + bm &al + bn\\ck + dm &cl + dn\end{array}\right]

= \left[\begin{array}{cc}ap+ak + br + bm &aq+al+bs + bn \\cp+ck + dr + dm &cq+cl+ds + dn\end{array}\right]

=> LHS = RHS

QED

Hence Proved

A(B + C) = AB + AC

Learn more:

If a=matrix 2,3,5,-2 write a inverse in terms of a - Brainly.in

https://brainly.in/question/3109606

If a and b are matrix with 32 and 56 elements respectively, then the ...

https://brainly.in/question/7583245

Similar questions