Math, asked by shaswataray, 4 months ago

Please slove this problem.​

Attachments:

Answers

Answered by Asterinn
9

Given :

 \rm \displaystyle \int_{ - \frac{\pi}{2}}^{ \frac{\pi}{2} }     \rm\frac{dx}{1 +  {cot}^{4} x}  =  \dfrac{\pi}{2}

To prove :

R.H.S = L.H.S

Proof :

 \rm \longrightarrow \: I =  \displaystyle \int_{ - \frac{\pi}{2}}^{ \frac{\pi}{2} }     \rm\frac{dx}{1 +  {cot}^{4} x}

We know that :-

\begin{gathered}\sf  \displaystyle \int_{ - a}^{a} f(x) dx= \begin{cases} \sf{2 \displaystyle\int_{ 0}^{a} f(x)  dx\:  \: ;\: \rm if    \: f(x) = even \: function } \\\ \\  \sf{0 \:  \:  \: ;\: \rm if    \: f(x) = odd \: function} \end{cases}\end{gathered}

\rm \longrightarrow \: I =  \displaystyle2 \int_{ 0}^{ \frac{\pi}{2} }     \rm\frac{dx}{1 +  {cot}^{4} x} \:  \:  \:  \:   [ let \:  this \:  be  \: equation \:  (1) ]

We know that :-

\boxed{\rm  \bf \displaystyle\int ^{ a} _{0} \bf f(x)  \: dx= \bf \displaystyle\int ^{ a} _{0} \bf f(a - x)  \: dx}

\rm \longrightarrow \: I =  \displaystyle2 \int_{ 0}^{ \frac{\pi}{2} }     \rm\frac{dx}{1 +  {cot}^{4}( \frac{\pi}{2}  - x) }

\rm \longrightarrow \: I =  \displaystyle2 \int_{ 0}^{ \frac{\pi}{2} }     \rm\frac{dx}{1 +  {tan}^{4}(  x) } \\  \\ \rm \longrightarrow \: I =  \displaystyle2 \int_{ 0}^{ \frac{\pi}{2} }     \rm\frac{dx}{1 + \dfrac{1}{  {cot}^{4}(  x) } }

\rm \longrightarrow \: I =  \displaystyle2 \int_{ 0}^{ \frac{\pi}{2} }     \rm\frac{{cot}^{4}(  x)}{1 +  {cot}^{4}(  x) } \:  dx \: \:  \:  \:  \: [ let  \: this \:  be  \: equation \:  (2) ]

Now , by adding equation (1) and (2) we get :-

\rm \longrightarrow \: 2I = \displaystyle2 \int_{ 0}^{ \frac{\pi}{2} }     \rm\frac{dx}{1 +  {cot}^{4} x}  +  \displaystyle2 \int_{ 0}^{ \frac{\pi}{2} }     \rm\frac{{cot}^{4}(  x)}{1 +  {cot}^{4}(  x) } \: dx

\rm \longrightarrow \: 2I = \displaystyle2 \int_{ 0}^{ \frac{\pi}{2} }     \rm\frac{1 +  {cot}^{4} x}{1 +  {cot}^{4} x}   \: dx

\rm \longrightarrow \: I = \displaystyle\int_{ 0}^{ \frac{\pi}{2} }   1   \rm \: dx

\rm \longrightarrow \: I = \displaystyle \bigg[ \:  \rm \:  x \:  \:  \bigg]_{ 0}^{ \frac{\pi}{2} }

\rm \longrightarrow \: I = ( \dfrac{\pi}{2}  - 0)

\rm \longrightarrow \: I =  \dfrac{\pi}{2}

 \therefore \rm \displaystyle \int_{ - \frac{\pi}{2}}^{ \frac{\pi}{2} }     \rm\frac{dx}{1 +  {cot}^{4} x}  =  \dfrac{\pi}{2}

Hence proved

Answered by mathdude500
1

\large\underline\blue{\bold{Given \:Question - }}

 \bull \:  \:  \: \rm \displaystyle \int_{ - \frac{\pi}{2}}^{ \frac{\pi}{2} } \rm\frac{dx}{1 + {cot}^{4} x} =  \: \dfrac{\pi}{2}

\begin{gathered}\Large{\bold{ \sf \: \green{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \red{\begin{gathered}\begin{gathered}\sf \displaystyle \int_{ - a}^{a} f(x) dx= \begin{cases} \rm{2 \displaystyle\int_{ 0}^{a} f(x) dx\: \: ;\: \rm if \: f(x) = even \: function } \\\ \\ \sf{0 \: \: \: ;\: \rm if \: f(x) = odd \: function} \end{cases}\end{gathered}\end{gathered}}

 \pink{\rm \bf \displaystyle\int ^{ a} _{0} \bf f(x) \: dx= \bf \displaystyle\int ^{ a} _{0} \bf f(a - x) \: dx}

\large\underline\purple{\bold{Solution :-  }}

 \bf \: Let \:  I  \:  =  \: \rm \displaystyle \int_{ - \frac{\pi}{2}}^{ \frac{\pi}{2} } \rm\frac{dx}{1 + {cot}^{4} x}  -  - (1)

Now,

 \longmapsto \red{ \bf \: Let \: f(x) = \dfrac{1}{1 +  {cot}^{4}x } }

So,

 \longmapsto { \bf \: \: f( - x) = \dfrac{1}{1 +  {cot}^{4}( - x) } }

 \longmapsto { \bf \: \: f( - x) = \dfrac{1}{1 +  {cot}^{4}x } }

 \longmapsto { \bf \:\: f( - x) = f(x)}

\rm :\implies\:\: \boxed{ \pink{\bf  \: f(x) \: is \: even \: function}}

Hence,

\rm :\implies\:\rm \displaystyle \int_{ - \frac{\pi}{2}}^{ \frac{\pi}{2} } \rm\frac{dx}{1 + {cot}^{4} x} = \rm \displaystyle 2\int_{ 0}^{ \frac{\pi}{2} } \rm\frac{dx}{1 + {cot}^{4} x}

\rm :\implies\:I \:  =  \: \rm \displaystyle 2\int_{ 0}^{ \frac{\pi}{2} } \rm\frac{dx}{1 + {cot}^{4} x}  -  -  - (2)

 \longmapsto\: \boxed{ \pink{\bf  \:change \: x \:  \to \: \dfrac{\pi}{2} - x }}

\rm :\implies\:I \:  =  \: \rm \displaystyle 2\int_{ 0}^{ \frac{\pi}{2} } \rm\frac{dx}{1 + {cot}^{4} \bigg(\dfrac{\pi}{2}  - x \bigg)}

\rm :\implies\:I \:  = \rm \displaystyle 2\int_{ 0}^{ \frac{\pi}{2} } \rm\frac{dx}{1 + {tan}^{4} x}

\rm :\implies\:I \:  =  \: \rm \displaystyle 2\int_{ 0}^{ \frac{\pi}{2} } \rm\frac{ {cot}^{4}x \:  dx}{1 + {cot}^{4} x}  -  - (3)

Now,

on adding equation (2) and equation (3), we get

\rm :\implies\:2I \:  =  \: \rm \displaystyle 2\int_{ 0}^{ \frac{\pi}{2} } \rm\frac{(1 +  {cot}^{4} x )\: dx}{1 + {cot}^{4} x}

\rm :\implies\:I \:  =  \: \rm \displaystyle \int_{ 0}^{ \frac{\pi}{2} } 1 \: dx

\rm :\implies\:I \:  =  \bigg[ \: x \:  \bigg]_0^{ \frac{\pi}{2} }

\bf\implies \:I \:  =  \: \dfrac{\pi}{2}

Hence,

\rm :\implies\: \boxed{ \green{\bf \displaystyle \int_{ - \frac{\pi}{2}}^{ \frac{\pi}{2} } \bf\frac{dx}{1 + {cot}^{4} x} = \dfrac{\pi}{2} }}

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions