Math, asked by abhilasha6239, 11 months ago

please slove this question ​

Attachments:

Answers

Answered by ZAYN40
1

Refer to the attachment.

Attachments:
Answered by FIREBIRD
2

Step-by-step explanation:

We Have :-

( \sin^{4} (\theta)  -  \cos^{4}  (\theta)  + 1) \csc^{2} (\theta)

To Prove :-

( \sin^{4} (\theta)  -  \cos^{4}  (\theta)  + 1) \csc^{2} (\theta)  = 2

Solution :-

( \sin^{4} (\theta)  -  \cos^{4}  (\theta)  + 1) \csc^{2} (\theta)  \\  \\  \\ ((( \sin ^{2} (\theta)  +  \cos^{2} (\theta) )(\sin ^{2} (\theta)   -   \cos^{2} (\theta) ) + 1) \csc^{2} (\theta)  \\  \\  \\ ((\sin ^{2} (\theta)   -   \cos^{2} (\theta) ) + 1) \csc^{2} (\theta)   \\  \\  \\ (\sin ^{2} (\theta)   + (1 -    \cos^{2} (\theta) ) ) \csc^{2} (\theta)   \\  \\  \\ (\sin ^{2} (\theta)    +\sin ^{2} (\theta)) \csc^{2} (\theta)    \\  \\  \\ 2\sin ^{2} (\theta)\csc^{2} (\theta)  \\  \\  \\ 2 \\  \\  \\  = rhs \\  \\  \\ hence \: proved

Similar questions