Math, asked by iShivamYadav, 3 months ago

Please solve 1 & 2 fast

Attachments:

Answers

Answered by Anonymous
6

SOLUTION :-

 \frac{4}{(216) {}^{ -  \frac{2}{3} } }  +  \frac{1}{(256) {}^{ \frac{ - 3}{4} } }  +  \frac{ 2}{(243) {}^{ \frac{ - 1}{5} } }

Here ,

  • 216 can be written as 6³
  • 256 can be written as 2⁸
  • 243 can be written as 3⁵

Lets simplify !

 \frac{4}{((6) {}^{3}) \frac{ - 2}{3}  }   + \frac{1}{((2) {}^{8}) \frac{ - 3}{4}  }   +  \frac{2}{((3) {}^{5}) {}^{ \frac{ - 1}{5} }   }

By exponents and laws

(a {}^{m} ) {}^{n}  = a {}^{mn}

 \frac{4}{6 {}^{3 \times  \frac{ - 2}{3} } }  +  \frac{1}{2 {}^{8}  { \times  \frac { - 3}{4} }^{}  }  +  \frac{2}{3 {}^{5} { \times  \frac{ - 1}{5} }^{}  }

 \frac{4}{6 { }^{ - 2} }  +    \frac{1}{2 {}^{ - 6} }  +  \frac{2}{3 {}^{ - 1} }

 \frac{1}{a {}^{ - n} }  = a {}^{n}

a {}^{ - n}  =  \frac{1}{a {}^{n} }

 \frac{4}{ \frac{1}{6 {}^{2} } }  +  \frac{1}{ \frac{1}{2 {}^{6} } }  +  \frac{1}{ \frac{2}{3} }

6 {}^{2}  \times 4 + 2 {}^{6}  \times 1 + 3 \times 2

36 \times 4 + 64 + 6

144 + 64 + 6

214

_____________________________

2)

( \frac{64}{125} ) {}^{ \frac{ - 2}{3} }  +  (\frac{256}{625} ) {}^{ \frac{ - 1}{4} }  +  (\frac{3}{7} ) {}^{0}

  • 64 can be written as 4³
  • 125 can be written as 5³
  • 256 can be written as 4⁴
  • 625 can be written as 5⁴
  • anything power 0 is 1

( \frac{4 {}^{3} }{5 {}^{3} } ) {}^{ \frac{ - 2}{3} }  +(  \frac{4 {}^{4} }{5 {}^{4} } ) {}^{ \frac{ - 1}{4} }  + 1

 \frac{a {}^{x} }{b {}^{x} }  = ( \frac{a}{b} ) {}^{x}

( (\frac{4}{5} ) {}^{3} ) \frac{ - 2}{3}  +  ((\frac{4}{5} ) {}^{4} ) {}^{ \frac{ - 1}{4} }  + 1

( \frac{4}{5} ) {}^{ - 2}  +  (\frac{4}{5} ) {}^{ - 1}  + 1

 \frac{1}{( \frac{4}{5}) {}^{2}  }  +  \frac{1}{ \frac{4}{5} }  + 1

 \frac{5 {}^{2} }{4 {}^{2} }  +  \frac{5}{4}  + 1

 \frac{25}{16}  +  \frac{5}{4}  + 1

LCM of 4, 16 is 16

 \frac{25 + 20 + 16}{16}

 \frac{61}{16}

Similar questions