Math, asked by prakritmalik, 1 year ago

Please solve 13 (i ).

Attachments:

Answers

Answered by sivaprasath
2

Answer:

Step-by-step explanation:

Given :

cos^{-1}\frac{x}{a} + cos^{-1}\frac{y}{b} = \alpha

Then, prove :

\frac{x^2}{a^2} - (\frac{2xy}{ab})cos\alpha + \frac{y^2}{b^2} = sin^2\alpha

Proof :

Let cos^{-1}\frac{x}{a} = X

cosX=\frac{x}{a},

sinX = \sqrt{1-cos^2X} = \sqrt{1-(\frac{x}{a})^2 }

Let cos^{-1}\frac{y}{b} = Y

cosY=\frac{y}{ab}.

sinY = \sqrt{1-cos^2Y} = \sqrt{1-(\frac{y}{b})^2 }

__

Then,

cos^{-1}\frac{x}{a} + cos^{-1}\frac{y}{b} = \alpha

X + Y = \alpha

⇒⇒ cos \alpha = cos(X+Y) =cosXcosY - sinXsinY

(\frac{x}{a}) (\frac{y}{b}) - [\sqrt{1-(\frac{x}{a})^2 }][\sqrt{1-(\frac{y}{b})^2 } ] = cos \alpha

\frac{xy}{ab} - cos \alpha = [\sqrt{1-(\frac{x}{a})^2 }][\sqrt{1-(\frac{y}{b})^2 } ]

By squaring both the sides,

We get,

(\frac{xy}{ab} - cos \alpha)^2 = ([\sqrt{1-(\frac{x}{a})^2 }][\sqrt{1-(\frac{y}{b})^2 } ])^2

(\frac{xy}{ab})^2 - 2(\frac{xy}{ab})(cos\alpha) + (cos \alpha)^2 = (1-[\frac{x}{a}]^2)(1-[\frac{y}{b}]^2)

\frac{x^2y^2}{a^2b^2} - 2\frac{xy}{ab}cos\alpha + cos^2 \alpha = 1 - \frac{x^2}{a^2} -\frac{y^2}{b^2} + \frac{x^2y^2}{a^2b^2}

\frac{x^2y^2}{a^2b^2} - \frac{x^2y^2}{a^2b^2} + \frac{x^2}{a^2} + \frac{y^2}{b^2}- \frac{2xy}{ab}cos\alpha + cos^2 \alpha = 1

\frac{x^2}{a^2} -\frac{2xy}{ab}cos\alpha+\frac{y^2}{b^2} = 1- cos^2\alpha = sin^2\alpha

Hence, Proved


sivaprasath: Based on what concept, this question came ?
Similar questions