Math, asked by ooOllMissCutiellOoo, 2 months ago

Please solve 17(iii)
No spam❎❎❎❎❎❎
Otherwise 40 ans report!!​

Attachments:

Answers

Answered by mddilshad11ab
207

\sf\small\underline\purple{Prove\:that\:-(i)}

\tt{\implies \bigg(\dfrac{x^a}{x^b}\bigg)^{(a+b)}\times\:\bigg(\dfrac{x^b}{x^c}\bigg)^{(b+c)}\times\:\bigg(\dfrac{x^c}{x^a}\bigg)^{(c+a)}=1}

\tt{\implies \dfrac{a^m}{a^n}=a^{m-n}}

\tt{\implies (x^{a-b})^{(a+b)}\times\:(x^{b-c})^{(b+c)}\times\:(x^{c-a})^{(c+a)}}

\tt{\implies (a^n)^m=(a)^{mn}}

\tt{\implies (x)^{(a-b)(a+b)}\times\:(x)^{(b-c)(b+c)}\times\:(x)^{(c-a)(c+a)}}

\tt{\implies a^2-b^2=(a+b)(a-b)}

\tt{\implies (x)^{a^{2}-b^{2}}\times\:(x)^{b^{2}-c^{2}}\times\:(x)^{c^{2}-a^{2}}}

\tt{\implies (x)^{(a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2})}}

\tt{\implies (x)^{0}=1}

\sf\small\underline\purple{Prove\:that\:-(ii)}

\tt{\implies \bigg(\dfrac{x^a}{x^b}\bigg)^{(a+b-c)}\times\:\bigg(\dfrac{x^b}{x^c}\bigg)^{(b+c-a)}\times\:\bigg(\dfrac{x^c}{x^a}\bigg)^{(c+a-b)}=1}

\tt{\implies (x^{a-b})^{(a+b-c)}\times\:(x^{b-c})^{(b+c-a)}\times\:(x^{c-a})^{(c+a-b)}}

\tt{\implies (x)^{(a-b)(a+b-c)}\times\:(x)^{(b-c)(b+c-a)}\times\:(x)^{(c-a)(c+a-b)}}

\tt{\implies (x)^{(a^2+ab+ac-ab-b^2-ac)}.(x)^{(b^2+bc-ac-bc+ac-c^2)}.(x)^{(c^2+ac-bc-ac-a^2+bc)}}

\tt{\implies (x)^{a^{2}-b^{2}}\times\:(x)^{b^{2}-c^{2}}\times\:(x)^{c^{2}-a^{2}}}

\tt{\implies (x)^{(a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2})}}

\tt{\implies (x)^{0}=1}

Answered by αηυяαg
20

1)

\sf{:\implies (x^{a-b})^{(a+b)}\times\:(x^{b-c})^{(b+c)}\times\:(x^{c-a})^{(c+a)}}

\sf{:\implies (a^n)^m=(a)^{mn}}

\sf{:\implies (x)^{(a-b)(a+b)}\times\:(x)^{(b-c)(b+c)}\times\:(x)^{(c-a)(c+a)}}

\sf{:\implies (x)^{a^{2}-b^{2}}\times\:(x)^{b^{2}-c^{2}}\times\:(x)^{c^{2}-a^{2}}}

\sf{:\implies (x)^{(a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2})}}

\bf{:\implies x^{0}=1}

━━━━━━━━━━━━━━━━━━

2)

\sf{:\implies (x^{a-b})^{(a+b-c)}\times\:(x^{b-c})^{(b+c-a)}\times\:(x^{c-a})^{(c+a-b)}}

\sf{:\implies (x)^{(a-b)(a+b-c)}\times\:(x)^{(b-c)(b+c-a)}\times\:(x)^{(c-a)(c+a-b)}}

\sf{:\implies (x)^{(a^2+ab+ac-ab-b^2-ac)}.(x)^{(b^2+bc-ac-bc+ac-c^2)} \times (x)^{(c^2+ac-bc-ac-a^2+bc)}}

\sf{:\implies (x)^{a^{2}-b^{2}}\times\:(x)^{b^{2}-c^{2}}\times\:(x)^{c^{2}-a^{2}}}

\sf{:\implies (x)^{(a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2})}}

\bf{\implies x^{0}=1}

━━━━━━━━━━━━━━━━━━

Similar questions