Math, asked by spacefad, 1 year ago

please solve 2nd one

Attachments:

Answers

Answered by Anonymous
1
Hope this helps you.
Attachments:

spacefad: thanks
Anonymous: welcome
Answered by TPS
1

16 = 2 \times 2 \times 2 \times 2 =  {2}^{4}  \\  \sqrt{16}  =  \sqrt{ {2}^{4} }  =  {2}^{2}  = 4

343 = 7 \times 7 \times 7 =  {7}^{3}  \\  \sqrt{343}  =  \sqrt{ {7}^{3} }  = 7 \sqrt{7}

243 = 3 \times 3 \times 3 \times 3 \times 3 =  {3}^{5}  \\  \sqrt[3]{243}  =  \sqrt[3]{ {3}^{5} }  = 3 \sqrt[3]{ {3}^{2} }  = 3 \sqrt[3]{9}

196 = 2 \times 2 \times 7 \times 7 =  {2}^{2}  \times  {7}^{2}  \\  \sqrt{196}  =  \sqrt{ {2}^{2}  \times  {7}^{2} }  = 2 \times 7 = 14


4 \sqrt{16}  - 6 \sqrt[2]{343}   + 18 \sqrt[3]{243}  -  \sqrt{196}  \\  \\  = 4 \times 4 - 6 \times 7 \sqrt{7}  + 18 \times 3 \sqrt[3]{9}  - 14 \\  \\  = 16 - 42 \sqrt{7}  + 54 \sqrt[3]{9}  - 14 \\  \\  = 2- 42 \sqrt{7}  + 54 \sqrt[3]{9}

You should keep it at that point.

If you want a final answer,

2- 42 \sqrt{7}  + 54 \sqrt[3]{9} \\   \\  = 2 - 111.122 + 112.325 \\  \\  = 3.203
Similar questions