Physics, asked by dityashahni, 1 year ago

please solve 34 and 36.

Attachments:

dityashahni: answer is correct of both of you.
SHUBHANKARnew1: thanks
SHUBHANKARnew1: i just now came for school

Answers

Answered by rakeshmohata
1
Hope u like my process
=====================
Formula to be used :
=-=-=-=-=-=-=-=-=-=-=-=
 =  > \bf r =  \frac{ {u}^{2}  \sin(2 \theta ) }{g}  \\  \\ where \:  \:  \:  \: r = range \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: u = velocity \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \theta  = angle \:  \: of \:  \: projection \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   g = gravity
_______________________

34)

=> Range for 1st projection

 =  \frac{ {u}^{2} \sin2( 45  - \theta )}{g }  =  \frac{ {u}^{2} \sin(90 - 2 \theta )  }{g}  \\  \\  =    \bf \: \frac{ {u}^{2}  \cos(2 \theta ) }{g}

=> Range for 2nd projection.

 =  \frac{ {u}^{2}  \sin2(45 +  \theta ) }{g}  =  \frac{ {u}^{2} \sin(90 + 2 \theta )  }{g}  \\  \\  =  \bf \:  \frac{ {u}^{2}  \cos(2 \theta ) }{g}

So, the ratio of the ranges of projection 1st to projection 2nd is

 = \bf \: \frac{ {u}^{2} \cos( 2\theta )  }{g} :  \frac{ {u}^{2} \cos(2 \theta )  }{g}  =  \underline{1 :1}
____________________________

36)

Smaller the  \sin2{\theta} shortest the range would be..

So,

For P,

 =  >  \sin(2 \theta )  =  \sin(2 \times 15)   \\  \\  =  \sin(30)  = \bf \underline{\frac{1}{2}}

For Q,

 =  >  \sin(2 \theta )  =  \sin(2 \times 30)  \\  \\  =  \sin(60)  =  \bf \underline{ \frac{ \sqrt{3} }{2} }
For R,

 =  >  \sin(2 \theta )  =  \sin(2 \times 45)  \\  \\  =  \sin(90)  =  \bf \underline{1}

For S,

 =  >  \sin(2 \theta )  =  \sin(2 \times 60)  \\  \\  =  \sin(120)  =   \bf \underline{\frac{ \sqrt{3} }{2}}
,..........................................................
Thus the value is least at 15°

Hence the body has shortest horizontal range at an angle 15°

_____________________________
❤️Hope this is ur required answer♥️

❤️Proud to help you ♥️

rakeshmohata: thanks for the brainliest one
Similar questions