Math, asked by harsh1923, 1 year ago

Please solve 4th one as soon as possible............

Attachments:

Answers

Answered by LoveDust
151

Answer :-

\implies \sqrt{3x + 1}  + 1 =  \sqrt{x}  \\   \\ \\</p><p><em><u>B</u></em><em><u>y</u></em><em><u> </u></em><em><u>\</u></em><em><u>:</u></em><em><u>Squaring</u></em><em><u> </u></em><em><u>\</u></em><em><u>:</u></em><em><u>both</u></em><em><u> </u></em>\:sides, \\ \\</p><p></p><p>\implies (3x + 1) + 1 + 2( \sqrt{ 3x + 1}) \times 1 = x \\  \\\implies 2x + 2  =  - 2 \sqrt{3x + 1}  \\  \\\implies  - 2x - 2 =  - 2 \sqrt{3x + 1}  \\  \\\implies  - 2(x + 1) =  - 2  \sqrt{3x + 1}  \\  \\\implies x + 1 =  \sqrt{3x + 1}  \\ \\  <em><u>Taking</u></em><em><u> </u></em><em><u>\</u></em><em><u>:</u></em><em><u> </u></em><em><u>square</u></em><em><u> </u></em><em><u>\</u></em><em><u>:</u></em><em><u> </u></em><em><u>root</u></em><em><u> </u></em><em><u>\</u></em><em><u>:</u></em><em><u> </u></em><em><u>left</u></em><em><u> </u></em><em><u>\</u></em><em><u>:</u></em><em><u> </u></em><em><u>side</u></em><em><u> </u></em><em><u>,</u></em><em><u> </u></em><em><u>\</u></em><em><u>\</u></em> \\ \implies ( {x + 1})^{2}  = 3x + 1 \\  \\ \implies {x}^{2}  + 1 + 2x = 3x + 1 \\  \\  {x}^{2}  - x = 0 \\  \\ x(x - 1) = 0

By equating factors to zero we get ,

\impliesX = 0

(X-1) =0

\implies x=1

So, Correct answer is (c) 0,1

_______________________________________

IDENTITIES USED:-

(a + b)² = a² + b² + 2ab

Hope it helps


viny6: nice answer
LoveDust: Thanks :)
viny6: ☺️☺️
Anonymous: Superb♥
Javariya: excellent
Answered by soumya2301
16

\huge\mathcal\underline{Question}

The roots of the given eqn .

 \sqrt{3x + 1}  + 1 =  \sqrt{x}

are :-

☆ 0

☆ 1

☆ 0,1

☆ None

\huge\mathcal\underline{Solution}

 \sqrt{3x + 1}  + 1 =  \sqrt{x}

By squaring both sides .....

( \sqrt{3x + 1}  + 1) ^{2} =  (\sqrt{x} ) ^{2}

By using the identity ...

(a + b) ^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 = &gt;   ( \sqrt{3x + 1} ) ^{2}  + (1) ^{2} + 2 \times ( \sqrt{3x + 1} )(1)=  (\sqrt{x} ) ^{2}

 =  &gt; (3x + 1) + 1 + 2( \sqrt{3x + 1} ) \times 1 =  x

 = &gt; 3x - x + 2 = - 2 \sqrt{3x + 1}

 =  &gt; 2x + 2 =  - 2 \sqrt{3x  + 1}

 =  &gt;  - 2x - 2 =  - 2 \sqrt{3x + 1}

 =  &gt;  - 2(x + 1) =  - 2 \sqrt{3x + 1}

 =  &gt; (x + 1) =  \sqrt{3x + 1}

Now by squaring both sides ....

 =  &gt;  {(x + 1)}^{2}  = 3x + 1

Now , by using

(a + b) ^{2}  =  {a}^{2}  +  {b}^{2} + 2ab

 =  &gt;  {x}^{2}  + 1 + 2 \times x \times 1 = 3x + 1

 =  &gt;  {x}^{2}  + 1 + 2x = 3x + 1

 =  &gt;  {x}^{2}  = 3x - 2x + 1 - 1

 =  &gt;  {x}^{2}  = 1x + 0

 =  &gt;  {x}^{2}  - x = 0

 =  &gt; x(x - 1) = 0

Now ,

 =  &gt; x = 0

and

 =  &gt; x - 1 = 0 = x = 1

The correct ans is option (c)

The roots of the given equation are 0 and 1 .


Anonymous: hlw
Similar questions