Math, asked by rahulsihag33, 1 year ago

Please solve above the QUESTION

Attachments:

shadowsabers03: Hey, bro. What's the continuation of the question? It's not appeared.
shadowsabers03: We have to prove it using something. That's the question. Please say what is to be used.

Answers

Answered by shadowsabers03
0

Hey mate!

The question is wrong due to some technical error. The actual question is given below.

Question:

$$Prove that$ \\ \\ \\ \boxed{\frac{\sin\theta+\cos\theta-1}{\sin\theta-\cos\theta+1}=\frac{1}{\bold{sec \theta}+\tan\theta}}

Proof:

We know that,

\sec^2\theta-\tan^2\theta=1 \\ \\ \\ \therefore\ -(\sec^2\theta-\tan^2\theta)=-1 \\ \\ \Rightarrow\ \tan^2\theta-\sec^2\theta=-1

\ \ \ \ \ \boxed{LHS} \\ \\ \\ \Rightarrow\ \boxed{\frac{\sin\theta+\cos\theta-1}{\sin\theta-\cos\theta+1}} \\ \\ \\ \Rightarrow\ \boxed{\frac{(\sin\theta+\cos\theta-1)\div\cos\theta}{(\sin\theta-\cos\theta+1)\div\cos\theta}} \\ \\ \\ \Rightarrow\ \boxed{\frac{\frac{\sin\theta+\cos\theta-1}{\cos\theta}}{\frac{\sin\theta-\cos\theta+1}{\cos\theta}}}

\Rightarrow\ \boxed{\frac{\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta}{\cos\theta}-\frac{1}{\cos\theta}}{\frac{\sin\theta}{\cos\theta}-\frac{\cos\theta}{\cos\theta}+\frac{1}{\cos\theta}}} \\ \\ \\ \Rightarrow\ \boxed{\frac{\tan\theta+1-\sec\theta}{\tan\theta-1+\sec\theta}} \\ \\ \\ \Rightarrow\ \boxed{\frac{\tan\theta-\sec\theta+1}{\tan\theta+\sec\theta-1}}

\Rightarrow\ \boxed{\frac{(\tan\theta-\sec\theta+1)(\tan\theta+\sec\theta)}{(\tan\theta+\sec\theta-1)(\tan\theta+\sec\theta)}} \\ \\ \\ \Rightarrow\ \boxed{\frac{(\tan\theta-\sec\theta)(\tan\theta+\sec\theta)+1(\tan\theta+\sec\theta)}{(\tan\theta+\sec\theta-1)(\tan\theta+\sec\theta)}} \\ \\ \\ \Rightarrow\ \boxed{\frac{\tan^2\theta-\sec^2\theta+\tan\theta+\sec\theta}{(\tan\theta+\sec\theta-1)(\tan\theta+\sec\theta)}}

\Rightarrow\ \boxed{\frac{-1+\tan\theta+\sec\theta}{(\tan\theta+\sec\theta-1)(\tan\theta+\sec\theta)}} \\ \\ \\ \Rightarrow\ \boxed{\frac{\tan\theta+\sec\theta-1}{(\tan\theta+\sec\theta-1)(\tan\theta+\sec\theta)}} \\ \\ \\ \Rightarrow\ \boxed{\frac{1}{\tan\theta+\sec\theta}} \\ \\ \\ \Rightarrow\ \boxed{\frac{1}{\sec\theta+\tan\theta}} \\ \\ \\ \Rightarrow\ \boxed{RHS}

Hence proved!

Hope this helps. Please mark it as the brainliest.

Please ask me if you've any doubts.

Thank you. :-))

         


rahulsihag33: hii bro this is not a right answer
shadowsabers03: Bro., the question was wrong. It would never be sin.
shadowsabers03: It's sec. Sometimes it was due to technical error in printing.
shadowsabers03: We can't prove your question. It can never be.
shadowsabers03: But, I have to ask you one thing. The question tells to use one identity, but it can't be seen in the attachment. What identity is to be used?
Similar questions