please solve all questions !
Attachments:
Answers
Answered by
24
1. 2(4cos^3 pi/9 - 3 cos pi/9)
=2(cos(3*pi/9))
=2*cos(pi/3)
=2*1/2
=1
2.
To prove it we need a formula for
sin(3x) = sin2x cos x - sin x cos 2x
= 2 sin x cos^2 x - sin x ( 1 - 2 sin ^2 x)
2 sin x (1-sin^2 x) - sin x ( 1 - 2 sin ^2 x)
Sin3x= 3sin x - 4 sin ^3 x
and
cos 3x = cos 2x cos x - sin 2x sin x =
(2 cos^2 x - 1) cos x - 2 sin ^2 x cos x
(2 cos^2 x - 1) cos x - 2 (1 - cos^2 x) cos x=
Cos3x = 4 cos ^3 x - 3 cos x
(3sin x - 4 sin ^3 x)/sin x - (4 cos ^3 x - 3 cos x)/cos x
= 3 - 4 sin ^2 x + 4 cos ^2 x +3
= 6 -4(sin^2 x + cos^2 x)
= 6 - 4*1
= 2
3. sin(a)sin(60 - a)sin(60 + a)
=> sin(a) * (sin(60)cos(a) - sin(a)cos(60)) * (sin(60)cos(a) + sin(a)cos(60))
=> sin(a) * (sin(60)^2 * cos(a)^2 - sin(a)^2 * cos(60)^2)
=> sin(a) * ((3/4) * cos(a)^2 - (1/4) * sin(a)^2)
=> (1/4) * sin(a) * (3cos(a)^2 - sin(a)^2)
=> (1/4) * sin(a) * (3 - 3sin(a)^2 - sin(a)^2)
=> (1/4) * (3sin(a) - 4sin(a)^3)
=> (1/4) * sin(3a)
5.
It is very simple ..
Just expand the function ..
Tan A + (tan 60 + tan A )/(1-tan60.tanA) + (tan (120) + tan A )/(1-tan120.tanA)
tan A + [root(3) + tanA]/[1-root(3).tanA] + [ tan A - root(3) ] /[1 + root(3).tanA]
tanA + [ root(3) + 3.tanA + tanA + root(3).tan^2A + tanA - root(3) -root(3).tan^2A + 3.tanA ] / [ 1 - 3tan^2A ]
tanA + [ 8tanA] / [ 1-3tan^2A ]
[9tanA - 3.tan^3A ]/[1-3tan^2A]
= 3.tan3A ( eqaul to RHS )
Hence proved
6.
LHS = cos3A cos3A + sin3A sin3A
= cos3A (4cos3A - 3cosA) + sin3A (3sinA - 4sin3A) (using identities of cos3A and sin3A)
= 4cos6A - 3cos4A + 3sin4A - 4sin6A
= 4 (cos6A - sin6A) + 3 (sin4A - cos4A)
= 4 ( (cos2A)3 - (sin2A)3) + 3 ( (sin2A)2 - (cos2A)2 )
= 4 [ (cos2A - sin2A) (cos4A + cos2Asin2A + sin4A)] + 3 [(sin2A+cos2A)(sin2A - cos2A)]
using a3 - b3 = (a-b)(a2+ab+b2) and a2-b2=(a-b)(a+b)
= 4 [ cos2A ((sin2A+cos2A)2 - cos2Asin2A) ] + 3 [ 1 (-cos2A)]
= 4 [cos2A (1 - cos2Asin2A )] - 3 cos2A
= 4cos2A - 4cos2A cos2Asin2A - 3cos2A
= cos2A - 4cos2A cos2Asin2A
= cos2A (1 - 4cos2Asin2A )
= cos2A (1 - sin22A) (Since 2sinA cosA = sin2A )
= cos2A cos22A
= cos32A
= RHS
Hence proved
7.
sin^3 x + sin^3 (x + 2π/3) + sin^3 (x + 4π/3)
= sin^3 x + sin^3 (π + x - π/3) + sin^3 (π + x + π/3)
= sin^3 x + sin^3 (x - π/3) + sin^3 (x + π/3)
= (1/4) (3sinx - sin3x) + (1/4) [3sin(x - π/3) - sin(3x - π)] + (1/4) [3sin(x + π/3) - sin(3x + π)]
= (1/4) [3sinx - sin3x + 3sin(x - π/3) + sin3x + 3sin(x + π/3) - sin3x]
= (3/4) [sinx - sin3x + sin(x - π/3) + sin(x + π/3)]
= (3/4) [sinx - sin3x - 2 sinx sin(π/6)]
= (3/4) (sinx - sin3x - sinx)
= - (3/4) sin3x.
Note:- The following formulae used in proving the above identity:
1) sin^3 x = (1/4) (3sinx - sin3x)
2) sinA + sinB = 2sin (A+B)/2 sin (A-B)/2
8.
sin 5A
=sin(2A +3A)
= sin2A cos3A +cos2A sin3A
= 2sinAcosA (4cos cub.A - 3cosA) + (1-2sin sq.A)(3sin A-4sin cub.A)
=2sinA cos sq.A(4cos sq.A-3) + sinA (1-2sin sq.A)(3-4sin sq.A)
=2 sinA (1- sin sq. A)[4-(1-sin sq.A)-3] + 3sin A -10sin cub.A + 8sin (to the power 5)A
=2sinA-2sin cub.A)(4-4sin sq.A-3) +
3sin A -10sin cub.A + 8sin (to the power 5)A
=2sinA - 2sin cub.A -8sin cub.A +8sinA+3sin A -10sin cub.A + 8sin (to the power 5)A
= 5sinA- 20sin cub.A +16 sin (to the power 5)A
=RHS
9.
Find the value of, tan^6 20° - 33 tan^4 20° + 27 tan^2 20° =?
Answer
13
Follow
Request
More
2 ANSWERS

Yuvraj Pokharna, Mathematics Faculty at IITeasy (2014-present)
Answered Jul 13, 2017
Use triple angle formula:
tan(3x) = (3 tan(x) − tan³(x)) / (1 − 3 tan²(x))
(3 tan(π/9) − tan³(π/9)) / (1 − 3 tan²(π/9)) = tan(π/3)
(3 tan(π/9) − tan³(π/9)) / (1 − 3 tan²(π/9)) = √3
(3 tan(π/9) − tan³(π/9)) = √3 (1 − 3 tan²(π/9))
Square both sides:
(3 tan(π/9) − tan³(π/9))² = 3 (1 − 3 tan²(π/9))²
tan⁶(π/9) − 6 tan⁴(π/9) + 9 tan²(π/9) = 3 (9 tan⁴(π/9) − 6 tan²(π/9) + 1)
tan⁶(π/9) − 6 tan⁴(π/9) + 9 tan²(π/9) = 27 tan⁴(π/9) − 18 tan²(π/9) + 3
tan⁶(π/9) − 6 tan⁴(π/9) − 27 tan⁴(π/9) + 9 tan²(π/9) + 18 tan²(π/9) = 3
tan⁶(π/9) − 33 tan⁴(π/9) + 27 tan²(π/9) = 3
10.
B.
We use formulas (A) - cosA=sin(90∘−A),
(B) - cos2A−sin2A=cos2A
(C) - 2sinAcosA=sin2A,
(D) - sinA+sinB=2sin(A+B/2)cos(A−B/2)and
(E) - sinA−sinB=2cos(A+B/2)sin(A−B/2)
(cos^2 33∘−cos^2 57∘) / (sin210.5∘−sin234.5∘)
= cos2^ 33∘−sin2(90∘−57∘) / (sin10.5∘+sin34.5∘)(sin10.5∘−sin34.5∘)- used A
= cos2^ 33∘−sin2^ 33∘ / −(2sin22.5∘cos12∘)(2cos22.5∘sin12∘) - used D & E
= cos66∘ / −(2sin22.5∘cos22.5∘×2sin12∘cos12∘) - used B
= −sin(90∘−66∘) / sin45∘sin24∘ - used A & C
= (−sin24∘)/ (1 /√2sin24∘)
= −√2
=2(cos(3*pi/9))
=2*cos(pi/3)
=2*1/2
=1
2.
To prove it we need a formula for
sin(3x) = sin2x cos x - sin x cos 2x
= 2 sin x cos^2 x - sin x ( 1 - 2 sin ^2 x)
2 sin x (1-sin^2 x) - sin x ( 1 - 2 sin ^2 x)
Sin3x= 3sin x - 4 sin ^3 x
and
cos 3x = cos 2x cos x - sin 2x sin x =
(2 cos^2 x - 1) cos x - 2 sin ^2 x cos x
(2 cos^2 x - 1) cos x - 2 (1 - cos^2 x) cos x=
Cos3x = 4 cos ^3 x - 3 cos x
(3sin x - 4 sin ^3 x)/sin x - (4 cos ^3 x - 3 cos x)/cos x
= 3 - 4 sin ^2 x + 4 cos ^2 x +3
= 6 -4(sin^2 x + cos^2 x)
= 6 - 4*1
= 2
3. sin(a)sin(60 - a)sin(60 + a)
=> sin(a) * (sin(60)cos(a) - sin(a)cos(60)) * (sin(60)cos(a) + sin(a)cos(60))
=> sin(a) * (sin(60)^2 * cos(a)^2 - sin(a)^2 * cos(60)^2)
=> sin(a) * ((3/4) * cos(a)^2 - (1/4) * sin(a)^2)
=> (1/4) * sin(a) * (3cos(a)^2 - sin(a)^2)
=> (1/4) * sin(a) * (3 - 3sin(a)^2 - sin(a)^2)
=> (1/4) * (3sin(a) - 4sin(a)^3)
=> (1/4) * sin(3a)
5.
It is very simple ..
Just expand the function ..
Tan A + (tan 60 + tan A )/(1-tan60.tanA) + (tan (120) + tan A )/(1-tan120.tanA)
tan A + [root(3) + tanA]/[1-root(3).tanA] + [ tan A - root(3) ] /[1 + root(3).tanA]
tanA + [ root(3) + 3.tanA + tanA + root(3).tan^2A + tanA - root(3) -root(3).tan^2A + 3.tanA ] / [ 1 - 3tan^2A ]
tanA + [ 8tanA] / [ 1-3tan^2A ]
[9tanA - 3.tan^3A ]/[1-3tan^2A]
= 3.tan3A ( eqaul to RHS )
Hence proved
6.
LHS = cos3A cos3A + sin3A sin3A
= cos3A (4cos3A - 3cosA) + sin3A (3sinA - 4sin3A) (using identities of cos3A and sin3A)
= 4cos6A - 3cos4A + 3sin4A - 4sin6A
= 4 (cos6A - sin6A) + 3 (sin4A - cos4A)
= 4 ( (cos2A)3 - (sin2A)3) + 3 ( (sin2A)2 - (cos2A)2 )
= 4 [ (cos2A - sin2A) (cos4A + cos2Asin2A + sin4A)] + 3 [(sin2A+cos2A)(sin2A - cos2A)]
using a3 - b3 = (a-b)(a2+ab+b2) and a2-b2=(a-b)(a+b)
= 4 [ cos2A ((sin2A+cos2A)2 - cos2Asin2A) ] + 3 [ 1 (-cos2A)]
= 4 [cos2A (1 - cos2Asin2A )] - 3 cos2A
= 4cos2A - 4cos2A cos2Asin2A - 3cos2A
= cos2A - 4cos2A cos2Asin2A
= cos2A (1 - 4cos2Asin2A )
= cos2A (1 - sin22A) (Since 2sinA cosA = sin2A )
= cos2A cos22A
= cos32A
= RHS
Hence proved
7.
sin^3 x + sin^3 (x + 2π/3) + sin^3 (x + 4π/3)
= sin^3 x + sin^3 (π + x - π/3) + sin^3 (π + x + π/3)
= sin^3 x + sin^3 (x - π/3) + sin^3 (x + π/3)
= (1/4) (3sinx - sin3x) + (1/4) [3sin(x - π/3) - sin(3x - π)] + (1/4) [3sin(x + π/3) - sin(3x + π)]
= (1/4) [3sinx - sin3x + 3sin(x - π/3) + sin3x + 3sin(x + π/3) - sin3x]
= (3/4) [sinx - sin3x + sin(x - π/3) + sin(x + π/3)]
= (3/4) [sinx - sin3x - 2 sinx sin(π/6)]
= (3/4) (sinx - sin3x - sinx)
= - (3/4) sin3x.
Note:- The following formulae used in proving the above identity:
1) sin^3 x = (1/4) (3sinx - sin3x)
2) sinA + sinB = 2sin (A+B)/2 sin (A-B)/2
8.
sin 5A
=sin(2A +3A)
= sin2A cos3A +cos2A sin3A
= 2sinAcosA (4cos cub.A - 3cosA) + (1-2sin sq.A)(3sin A-4sin cub.A)
=2sinA cos sq.A(4cos sq.A-3) + sinA (1-2sin sq.A)(3-4sin sq.A)
=2 sinA (1- sin sq. A)[4-(1-sin sq.A)-3] + 3sin A -10sin cub.A + 8sin (to the power 5)A
=2sinA-2sin cub.A)(4-4sin sq.A-3) +
3sin A -10sin cub.A + 8sin (to the power 5)A
=2sinA - 2sin cub.A -8sin cub.A +8sinA+3sin A -10sin cub.A + 8sin (to the power 5)A
= 5sinA- 20sin cub.A +16 sin (to the power 5)A
=RHS
9.
Find the value of, tan^6 20° - 33 tan^4 20° + 27 tan^2 20° =?
Answer
13
Follow
Request
More
2 ANSWERS

Yuvraj Pokharna, Mathematics Faculty at IITeasy (2014-present)
Answered Jul 13, 2017
Use triple angle formula:
tan(3x) = (3 tan(x) − tan³(x)) / (1 − 3 tan²(x))
(3 tan(π/9) − tan³(π/9)) / (1 − 3 tan²(π/9)) = tan(π/3)
(3 tan(π/9) − tan³(π/9)) / (1 − 3 tan²(π/9)) = √3
(3 tan(π/9) − tan³(π/9)) = √3 (1 − 3 tan²(π/9))
Square both sides:
(3 tan(π/9) − tan³(π/9))² = 3 (1 − 3 tan²(π/9))²
tan⁶(π/9) − 6 tan⁴(π/9) + 9 tan²(π/9) = 3 (9 tan⁴(π/9) − 6 tan²(π/9) + 1)
tan⁶(π/9) − 6 tan⁴(π/9) + 9 tan²(π/9) = 27 tan⁴(π/9) − 18 tan²(π/9) + 3
tan⁶(π/9) − 6 tan⁴(π/9) − 27 tan⁴(π/9) + 9 tan²(π/9) + 18 tan²(π/9) = 3
tan⁶(π/9) − 33 tan⁴(π/9) + 27 tan²(π/9) = 3
10.
B.
We use formulas (A) - cosA=sin(90∘−A),
(B) - cos2A−sin2A=cos2A
(C) - 2sinAcosA=sin2A,
(D) - sinA+sinB=2sin(A+B/2)cos(A−B/2)and
(E) - sinA−sinB=2cos(A+B/2)sin(A−B/2)
(cos^2 33∘−cos^2 57∘) / (sin210.5∘−sin234.5∘)
= cos2^ 33∘−sin2(90∘−57∘) / (sin10.5∘+sin34.5∘)(sin10.5∘−sin34.5∘)- used A
= cos2^ 33∘−sin2^ 33∘ / −(2sin22.5∘cos12∘)(2cos22.5∘sin12∘) - used D & E
= cos66∘ / −(2sin22.5∘cos22.5∘×2sin12∘cos12∘) - used B
= −sin(90∘−66∘) / sin45∘sin24∘ - used A & C
= (−sin24∘)/ (1 /√2sin24∘)
= −√2
AJAYMAHICH:
ab khush
Answered by
11
I Hope This Solution Help You Sweetheart !
Attachments:
Similar questions