Math, asked by Anonymous, 1 year ago

Please solve!!

All the 3 questions.

Attachments:

Answers

Answered by rakeshmohata
1
Hope u like my process
======================
The linear form of differential equation is

 =  >  \bf \:  \frac{dy}{dx}  + py = q
Thus the Integrating factor can be calculated by solving..

 =  >  \bf {e}^{ \int \: p \: dx}
___________________________
Now,

i)

 =  >  \it \: x  \frac{dy}{dx}  - y = 2 {x}^{2}  \sec {}^{2} (2x)  \\  \\  =  >  \frac{dy}{dx}  -  \frac{1}{x} .y = 2x \sec {}^{2} (2x)  \\  \\ thus \:  \:  \\  \\  \bf \: integrating \:  \: factor \:  \: will \:  \: be \\  \\  =  {e}^{ \int( -  \frac{ 1 }{x}) dx} =  {e}^{ -  log(x) }  \\  \\  =  {e}^{ log( \frac{1}{x} ) }  =  \bf \underline{ \frac{1}{x} } \:  \:  \:  \: ( \it \: answer)

ii)

 =  > y \frac{dx}{dy}  - x = 2 {y}^{2}  \\  \\  =  >  \bf \frac{dx}{dy}   + ( -  \frac{1}{y} )x = 2 {y}^{2}  \\  \\ thus \:  \:  \: p =   - \frac{1 }{y}  \\  \\ \: \bf the \:  \: integrating \:  \: factor \:  \: will \:  \: be \\  \\  =  >  {e}^{ \int \: p \: dy}  =  {e}^{   \int(  - \frac{ 1}{y}) dy}  =  {e}^{ -  log(y) }  \\  \\  =   {e}^{ log( \frac{1}{y} ) }  =  \bf \underline{ \frac{1}{y} } \:  \:  \:  \: ( \it \: answer)

iii)

 =  > (1 +  {x}^{2} ) \frac{dy}{dx}  + xy =  \frac{ {x}^{4} }{(1 +  {x}^{5} )}  {( \sqrt{1 -  { {x}^{2} }} } ) ^{3}   \\  \\  =  >  \bf \frac{dy}{dx}  + ( \frac{x}{1 +  {x}^{2} } )y =  \frac{ {x}^{4}( \sqrt{1 -  {x}^{2} }) {}^{3}   }{(1 +  {x}^{5}) }  \\  \\ thus \:  \:  \: p =  \frac{x}{1 +  {x}^{2} }  =  \frac{1}{2} ( \frac{2x}{1 +  {x}^{2} } ) \\  \\ now \:  \:  \\  \\  \bf \: integrating \:  \:  \: factor \:  \: wil \:  \: be \\  \\  =    {e}^{ \int \: p \: dx}  = {e}^{  \frac{1}{2} \int \frac{2x}{1 +  {x}^{2} } dx}  =  {e}^{ \frac{1}{2} log(1 +  {x}^{2} )  }  \\  \\  =  {e}^{ log( {(1 +  {x}^{2}) }^{ \frac{1}{2} } ) }  =  {e}^{ log( \sqrt{1 +  {x}^{2} } ) }  =  \bf \underline{ \sqrt{1 +  {x}^{2} } } \:  \:  \:  \:  \: ( \it \: answer)
____________________________
Hope this is ur required answer

Proud to help you

rakeshmohata: thanks for the brainliest one
Similar questions