please solve all the problems and get brainest
Answers
Question 32 :
Given that log 2 = 0.3010 and log 3 = 0.4771, find the value of the following :
Answer :
(i) log 12
= log ( 3 × 4 )
= log ( 3 × 2² )
= log 3 + log 2²
= log 3 + 2log 2
= 0.4771 + 2( 0.3010 )
= 0.4771 + 0.6020
= 1.0791
(ii) log 5
= log 10/2
= log 10 - log 2
= 1 - log 2
= 1 - 0.3010
= 0.699
(iii) log 5^( 1/3 )
= 1/3 × log 5
= 1/3 × 0.699
= 0.233
(iv) log 108
= log ( 27 × 4 )
= log ( 3³ × 2² )
= log 3³ + log 2²
= 3log 3 + 2log 2
= 3( 0.4771 ) + 2( 0.3010 )
= 1.4313 + 0.6020
= 2.0333
(v) log (3/8)
= log ( 3 / 2³ )
= log 3 - log 2³
= log 3 - 3log 2
= 0.4771 - 3( 0.3010 )
= 0.4771 - 0.903
= - 0.4259
(vi) log 48
= log ( 16 × 3 )
= log ( 2^4 × 3 )
= log 2^4 + log 3
= 4log 2 + log 3
= 4( 0.3010 ) + 0.4771
= 1.204 + 0.4771
= 1.6811
Question 33 :
Evaluate each of the following :
Answer :
(i) 3^[ - (1/2) log_3 81 ]
= 3^[ - (1/2) log_3 3^4 ]
= 3^[ - (1/2) 4 × log_3 3 ]
= 3^[ - (1/2) × 4 ]
= 3^[ - 2 ]
= 1 / 3²
= 1 / 9
(ii) 2^[ log_(2√2) 15 ]
Since log_( a^m ) n = 1/m × log_a n
Using a^( mn) = [ a^m ]^n
Since a^( log_a N) = N
= 15^( 2/3 ) ≈ 6.0822
Since a^( log_a N) = N
= mnp
(v) log_π ( tan 0.25π )
= log_π ( tan π/4 )
= log_π 1
= 0
(vi) log_2 ( log_3 81 )
= log_2 ( log_3 3^4 )
= log_2 ( 4log_3 3 )
= log_2 4
= log_2 2²
= 2log_2 2
= 2
(vii) log_3 5 × log_25 27
= ( log 5 / log 3 ) × ( log 27 / log 25 )
= ( log 5 / log 3 ) × ( log 3³ / log 5² )
= ( log 5 / log 3 ) × ( 3log 3 / 2log 2)
= 3/2
Question 34 :
Prove that :
(i) a^[ log_a 1 + 2log_a 2 + 3log_a 3 + ........ + nlog_a n = 2² × 3³ × 4^4 × ........ n^n
Answer :
Consider LHS
Using Power rule m. log a = log a^m
Using Product rule log a + log b = log ab
= RHS
Hence proved.
Question 34 :
Prove that :
(ii) a^[ log_a 1 + 2log_a 2 + 2log_a 3 + ...... + 2.log_a n ] = ( n! )²
Answer :
Consider LHS
= RHS
Hence proved.
Question 35 :
Prove that :
(i) log_(10) tan 1° × log_(10) tan 2° × log_(10) tan 3° × ........ log_(10) tan 50° = 0
Answer :
Consider LHS
It can be written as
Substituting tan 45° = 1
Since log_a 1 = 0
= 0
= RHS
Hence proved.
Question 35:
Prove that :
(ii) log_(10) tan 1° + log_(10) tan 2° + log_(10) tan 3° + ........ log_(10) tan 89° = 0
Answer :
Consider LHS
= log_(10) tan 1° + log_(10) tan 2° + ........ log_(10) tan 88° + log_(10) tan 89°
= log_(10) [ tan 1° × tan 2° × ....... tan 88° × tan 89° ]
It can be written as
= log_(10) [ tan 1° × tan 2° × ....... tan ( 90 - 2 )° × tan ( 90 - 1 )° ]
Using trigonometric ratios for complementary angles tan ( 90 - Φ ) = cot Φ
= log_(10) [ ( tan 1° × cot 1° ) × ( tan 2° × cot 2° ) ..... ]
= log_(10) [ ( tan 1° × 1 / tan 1° ) × ( tan 2° × 1 / tan 2° ) ....]
= log_(10) [ 1 × 1 × ....... 1 ]
= log_(10) 1
= 0
= RHS