Please solve and answer this question fast. Find the roots of the quadratic equation :
2(x+1/x)^2 - 3(x-1/x) - 8 = 0.
Answers
Answer:
1,-1,-1/2,2
Step-by-step explanation:
Given Equation is 2(x + 1/x)² - 3(x - 1/x) - 8 = 0
⇒ 2(x² + 1/x)² - 3(x² - 1/x) - 8 = 0
LCM = x²
⇒ 2(x² + 1)² - 3x(x² - 1) - 8x² = 0
⇒ 2(x⁴ + 1 + 2x²) - 3x³ + 3x - 8x² = 0
⇒ 2x⁴ + 2 + 4x² - 3x³ + 3x - 8x² = 0
⇒ 2x⁴ - 3x³ - 4x² + 3x + 2 = 0
⇒ 2x⁴ - x³ - 2x³ - 5x² + x² - 2x + 5x + 2 = 0
⇒ 2x⁴ - x³ - 5x² - 2x - 2x³ + x² + 5x + 2 = 0
⇒ x(2x³ - x² - 5x - 2) - (2x³ - x² - 5x - 2) = 0
⇒ (x - 1)(2x³ - x² - 5x - 2) = 0
⇒ (x - 1)(2x³ + 2x² - 3x² - 3x - 2x - 2) = 0
⇒ (x - 1)(2x²(x + 1) - 3x(x + 1) - 2(x + 1)) = 0
⇒ (x - 1)(x + 1)(2x² - 3x - 2) = 0
⇒ (x - 1)(x + 1)(2x² - 4x + x - 2) = 0
⇒ (x - 1)(x + 1)(2x(x - 2) + (x - 1)) = 0
⇒ (x - 1)(x + 1)(2x + 1)(x - 2) = 0
⇒ x = 1,-1,-1/2,2.
Therefore, the roots of the quadratic equation is 1,-1,-1/2,2.
Hope it helps!
Step-by-step explanation:
2(x + 1/x)² - 3(x - 1/x) - 8 = 0
2(x² + 1/x)² - 3(x² - 1/x) - 8 = 0
2(x² + 1)² - 3x(x² - 1) - 8x² = 0
2(x⁴ + 1 + 2x²) - 3x³ + 3x - 8x² = 0
2x⁴ + 2 + 4x² - 3x³ + 3x - 8x² = 0
2x⁴ - 3x³ - 4x² + 3x + 2 = 0
2x⁴ - x³ - 2x³ - 5x² + x² - 2x + 5x + 2 = 0
2x⁴ - x³ - 5x² - 2x - 2x³ + x² + 5x + 2 = 0
x(2x³ - x² - 5x - 2) - (2x³ - x² - 5x - 2) = 0
(x - 1)(2x³ - x² - 5x - 2) = 0
(x - 1)(2x³ + 2x² - 3x² - 3x - 2x - 2) = 0
(x - 1)(2x²(x + 1) - 3x(x + 1) - 2(x + 1)) = 0
(x - 1)(x + 1)(2x² - 3x - 2) = 0
(x - 1)(x + 1)(2x² - 4x + x - 2) = 0
(x - 1)(x + 1)(2x(x - 2) + (x - 1)) = 0
(x - 1)(x + 1)(2x + 1)(x - 2) = 0
x = 1,-1,-1/2,2.