Math, asked by ankit8858564309, 9 months ago

please solve and explain​

Attachments:

Answers

Answered by deepak14879
0

Step-by-step explanation:

by multiplying and dividing by (1-sintheta)

using identity

taking square roots

then prove r. h. s=l.h.s

Attachments:
Answered by warylucknow
0

Answer:

The value is \frac{sin\theta}{(1-cos\theta)}.

Step-by-step explanation:

The expression can be solved as follows:

\sqrt{\frac{1+cos\theta}{1-cos\theta}}=\sqrt{\frac{1+cos\theta}{1-cos\theta}\times\frac{1-cos\theta}{1-cos\theta}}

              =\sqrt{\frac{1^{2}-(cos\theta)^{2}}{(1-cos\theta)^{2}}}

              =\sqrt{\frac{1-cos^{2}\theta}{(1-cos\theta)^{2}}}

              =\sqrt{\frac{sin^{2}\theta}{(1-cos\theta)^{2}}}

              =\frac{sin\theta}{(1-cos\theta)}

Thus, the value is \frac{sin\theta}{(1-cos\theta)}.

Similar questions