Math, asked by anjaliverma99, 1 year ago

please solve and give me answer as soon as possible

Attachments:

anjaliverma99: plz give me its solution

Answers

Answered by MOSFET01
53

\bold{\huge{\underline{\underline{Solution\: \colon}}}}



 1) \:\dfrac{\sqrt{a+x} +\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}\\\\\\ Rationalising \: the\: denominator \: and \: numerator \: by \colon\\\\\\ multiply \: it \: by\\\\\\\sqrt{a+x} +\sqrt{a-x}\\\\\\ = \dfrac{\sqrt{a+x} +\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}} \times \dfrac{\sqrt{a+x}+ \sqrt{a-x}}{\sqrt{a+x}+\sqrt{a-x}}\\\\\\= \dfrac{(\sqrt{a+x} +\sqrt{a-x})^{2}}{(\sqrt{a+x})^{2}-(\sqrt{a-x})^{2}}\\\\\\ = \dfrac{a+x+a-x+2(\sqrt{a+x}\times\sqrt{a-x})}{a+x-a+x}\\\\\\ = \dfrac{2a+2\sqrt{a^{2}-x^{2}}}{2x}\\\\\\ =  \dfrac{2(a+\sqrt{a-x})}{2x}\\\\\\ = \dfrac{a+\sqrt{a^{2}-x^{2}}}{x}



Now we have a value of x :



 x= \dfrac{2ab}{b^{2}+1}



 = \dfrac{a+\sqrt{a^{2}-\Bigg(\dfrac{4a^{2}.b^{2}}{(b^{2}+1)^{2}}\Bigg)}}{\dfrac{2ab}{b^{2}+1}}\\\\\\= \dfrac{a+\sqrt{a^{2}\Bigg(1-\dfrac{4b^{2}}{(b^{2}+1)^{2}}\Bigg)}}{\dfrac{2ab}{b^{2}+1}}\\\\\\ = \dfrac{a+a\sqrt{\Bigg(1-\dfrac{4b^{2}}{(b^{2}+1)^{2}}\Bigg)}}{\dfrac{2ab}{b^{2}+1}}



 = \dfrac{a\Bigg(1 + \sqrt{ \dfrac{ {( {b}^{2}  + 1)}^{2}  - 4 {b}^{2} }{ {( {b}^{2} + 1) }^{2} } }\Bigg)}{ \dfrac{2ab}{ {b}^{2}  + 1} }



 = \dfrac{a\Bigg(1 +  \sqrt{ \dfrac{ ({b}^{4}  + 2 {b}^{2}  + 1  - 4 {b}^{2}) }{ {( {b}^{2} + 1) }^{2} } } \Bigg)}{ \dfrac{2ab}{ {b}^{2}  + 1} }



 = \dfrac{a\Bigg( \dfrac{ {b}^{2} + 1 +  \sqrt{ {( {b}^{2} - 1) }^{2} }  }{ {b}^{2}  + 1}\Bigg)}{ \dfrac{2ab}{ {b}^{2}  + 1} }



 = \dfrac{a\Bigg(  \dfrac{ {b}^{2}  +  \cancel{1} +  {b}^{2} -  \cancel{1} }{ \cancel{ {b}^{2}  + 1}}\Bigg)}{ \dfrac{2ab}{  \cancel{{b}^{2}  + 1} }}



 =  \dfrac{ \cancel{(2a b)}b}{ \cancel{(2ab)}}  \\\\\\\\  =  \bold{b}




\bold{\large{\boxed{Answer\: is \:(b)}}}




\bold{\large{Thanks}}


anjaliverma99: okk
Answered by iamalpha
18

HERE'S YOUR ANSWER

_________________________________________

Refer to the attached image for your answer.

Comment below if you didn't understand something.

_________________________________________


Hope helped !!


Happy to help :)


#IamAlpha

Attachments:
Similar questions