Math, asked by preetal2006, 4 months ago

Please solve and give steps too!

Attachments:

Answers

Answered by Anonymous
22

❄️ Question :-

\bf  \frac{4+3 \sqrt{5} }{4-3 \sqrt{5} }  +  \frac{4-3 \sqrt{5} }{4+3 \sqrt{5} }

Simplify this by rationalizing the denominator.

 \\

❄️ Solution :-

Rationalizing both -

\mapsto \bf  \frac{4+3 \sqrt{5} }{4-3 \sqrt{5} }  \times  \frac{4 + 3 \sqrt{5} }{4 + 3 \sqrt{5} }

Using the identities, (a+b)²=a²+b²+2ab and (a-b)(a+b)=a²-b².

\implies \small \bf \dfrac{(4)²+(3 \sqrt{5}) ²+2(4)(3 \sqrt{5} )}{(4)²-(3 \sqrt{5)²} }

\implies \bf  \frac{16 + 45 + 24 \sqrt{5} }{16 - 45}

\implies \bf  \frac{61 + 24\sqrt{5} }{ - 29}

\mapsto\bf  \frac{4 - 3 \sqrt{5} }{4 + 3 \sqrt{5} }  \times  \frac{4 - 3 \sqrt{5} }{4-3 \sqrt{5} }

\implies \bf  \frac{4 - 3 \sqrt{5} }{4 + 3 \sqrt{5} }  \times  \frac{4 - 3 \sqrt{5} }{4 - 3 \sqrt{5} }

\implies \Large \bf  \frac{(4)²+(3 \sqrt{5})²-2(4)(3 \sqrt{5})  }{(4)²-(3 \sqrt{5})² }

\implies \bf  \frac{16+45 - 24 \sqrt{5} }{(4)² - (3 \sqrt{5})² }

\implies \bf  \frac{61-24 \sqrt{5} }{16-45}

\implies \bf  \frac{61  -  24 \sqrt{5} }{ - 29}

Solving them :-

\mapsto \bf \frac{61 + 24 \sqrt{5} }{ - 29}  +  \frac{61 - 24 \sqrt{5} }{ - 29}

\implies \bf  \frac{61 + 24 \sqrt{5} + 61 - 24 \sqrt{5}  }{ - 29 + ( - 29)}

\implies \bf  \frac{61 + 61\cancel{ - 24 \sqrt{5}}\cancel{+24 \sqrt{5}}  }{-29-29}

\implies \bf  \frac{\cancel{122}}{\cancel{ - 58}}

 \implies \bf \frac{61}{ - 29}

_____________________

Hope it helps you :)

Similar questions