Math, asked by priyotoshbala1234, 8 months ago

please solve and kindly don't spam.​

Attachments:

Answers

Answered by anindyaadhikari13
4

\star\:\:\bf\large\underline\blue{Question:-}

  • Simplify the problem.

\star\:\:\bf\large\underline\blue{Solution:-}

 \sqrt{a + b + 2x + 2 \sqrt{ab + (a + b)x +  {x}^{2} } }

Now, let

y =  \sqrt{ab + (a + b)x +  {x}^{2} }

Therefore,

 \sqrt{a + b + 2x + 2 \sqrt{ab + (a + b)x +  {x}^{2} } }

 =  \sqrt{a + b + 2x + 2 + 2 \sqrt{y} }

Now, we will factorise y.

 \sqrt{ab + (a + b)x +  {x}^{2} }

 =  \sqrt{ab + ax + bx +  {x}^{2} }

 =  \sqrt{a(b + x) +x(b+ x)}

 =  \sqrt{(x + a)(x + b)}

Now,

 =  \sqrt{a + b + 2x + 2 + 2 \sqrt{y} }

 =   \small\sqrt{(x + a) + (x + b) + 2 \sqrt{(x + a)(x + b)} }

 =  \sqrt{ {( \sqrt{x + a}) }^{2}  +  {( \sqrt{(x + b} )}^{2}  + 2 \times  \sqrt{(x + a}  \times  \sqrt{(x + b)} }

 =  \sqrt{ {( \sqrt{x + a}  +  \sqrt{x + b} )}^{2} }

 =  \sqrt{x + a}  +  \sqrt{x + b}

\star\:\:\bf\large\underline\blue{Answer:-}

  •  \sqrt{x + a }  +  \sqrt{x + b}
Similar questions