Math, asked by sssssss13, 1 year ago

please solve any one part from them.I do not want direct answers

Attachments:

Answers

Answered by sushmitasharma
2
1) (x² + 3) ( x² - 3)
by identity ( a²-b²)= (a+b) (a-b)
x²-3²= x² -9 this is the answer

sushmitasharma: thanks yrr
sushmitasharma: please mark it as brainliest
Answered by ashishks1912
3

4) The products using the identity is given below :

a) (x^2+3)(x^2-3)=x^4-9

b) (3a+7b)(3a-7b)=9a^2-49b^2

c) (\frac{a}{4}+\frac{2b}{7})(\frac{a}{4}+\frac{2b}{7})=\frac{a^2}{16}+\frac{4b^2}{49}+\frac{ab}{7}

d) (7p-6q)(7p+6q)=49p^2-36q^2

e)  (2xy+7yz)(2xy+7yz)=4x^2y^2+49y^2z^2+28xy^2z

f) (3m-4n)(3m-4n)=9m^2+16n^2-24mn

g) (4pq+m^2)(4pq-m^2)=16p^2q^2-m^4

h) (12a-6b)(12a+4b)=144a^2-24ab-24b^2

i) (7x+3z)(7x-3z)=49x^2-9z^2

Step-by-step explanation:

4) a)

  • Given expression is (x^2+3)(x^2-3)
  • To find the value of the given expression :
  • The given expression is of the form (a^2-b^2)=(a+b)(a-b)
  • (x^2+3)(x^2-3)
  • =(x^2)^2-3^2  here a=x^2 and b=3
  • =x^4-9
  • Therefore (x^2+3)(x^2-3)=x^4-9

b)

  • Given expression is (3a+7b)(3a-7b)
  • To find the value of the given expression :
  • The given expression is of the form (a^2-b^2)=(a+b)(a-b)
  • (3a+7b)(3a-7b) here a=3a and b=7b
  • =(3a)^2-(7b)^2
  • =9a^2-49b^2
  • Therefore (3a+7b)(3a-7b)=9a^2-49b^2

c)

  • Given expression is (\frac{a}{4}+\frac{2b}{7})(\frac{a}{4}+\frac{2b}{7})
  • To find the value of the given expression :
  • (\frac{a}{4}+\frac{2b}{7})(\frac{a}{4}+\frac{2b}{7})
  • =(\frac{a}{4}+\frac{2b}{7})^2
  • The given expression is of the form (a+b)^2=a^2+b^2+2ab
  • =(\frac{a}{4})^2+(\frac{2b}{7})^2+2(\frac{a}{4})(\frac{2b}{7}) here a=\frac{a}{4} and b=\frac{2b}{7}
  • =\frac{a^2}{16}+\frac{4b^2}{49}+\frac{ab}{7}
  • Therefore (\frac{a}{4}+\frac{2b}{7})(\frac{a}{4}+\frac{2b}{7})=\frac{a^2}{16}+\frac{4b^2}{49}+\frac{ab}{7}

d)

  • Given expression is (7p-6q)(7p+6q)
  • To find the value of the given expression :
  • The given expression is of the form (a^2-b^2)=(a+b)(a-b)
  • (7p-6q)(7p+6q) here a=7p and b=6q
  • =(7p)^2-(6q)^2
  • =49p^2-36q^2
  • Therefore (7p-6q)(7p+6q)=49p^2-36q^2

e)

  • Given expression is (2xy+7yz)(2xy+7yz)
  • To find the value of the given expression :
  • (2xy+7yz)(2xy+7yz)
  • =(2xy+7yz)^2
  • The given expression is of the form (a+b)^2=a^2+b^2+2ab
  • =(2xy)^2+(7yz)^2+2(2xy)(7yz)
  • =4x^2y^2+49y^2z^2+28xy^2z here a=2xy and b=7yz
  • Therefore (2xy+7yz)(2xy+7yz)=4x^2y^2+49y^2z^2+28xy^2z

f)

  • Given expression is (3m-4n)(3m-4n)
  • To find the value of the given expression :
  • (3m-4n)(3m-4n)
  • =(3m-4n)^2
  • The given expression is of the form (a-b)^2=a^2+b^2-2ab
  • =(3m)^2+(4n)^2-2(3m)(4n)
  • =9m^2+16n^2-24mn here a=3m and b=4n
  • Therefore (3m-4n)(3m-4n)=9m^2+16n^2-24mn

g)  

  • Given expression is (4pq+m^2)(4pq-m^2)
  • To find the value of the given expression :
  • The given expression is of the form (a^2-b^2)=(a+b)(a-b)
  • (4pq+m^2)(4pq-m^2)
  • =(4pq)^2-(m^2)^2 here a=4pq and b=m^2
  • =16p^2q^2-m^4
  • Therefore (4pq+m^2)(4pq-m^2)=16p^2q^2-m^4

h)

  • Given expression is (12a-6b)(12a+4b)
  • To find the value of the given expression :
  • The given expression is of the form (x+a)(x+b)=x^2+(a+b)x+ab
  • (12a-6b)(12a+4b)
  • =(12a)^2+(-6b+4b)(12a)+(-6b)(4b) here x=12a, a=-6b and b=4b
  • =144a^2-2b(12a)-24b^2
  • =144a^2-24ab-24b^2
  • Therefore (12a-6b)(12a+4b)=144a^2-24ab-24b^2

i)

  • Given expression is (7x+3z)(7x-3z)
  • To find the value of the given expression :
  • The given expression is of the form (a^2-b^2)=(a+b)(a-b)
  • (7x+3z)(7x-3z) here a=7x and b=3z
  • =(7x)^2-(3z)^2
  • =49x^2-9z^2
  • Therefore (7x+3z)(7x-3z)=49x^2-9z^2
Similar questions