Math, asked by Ashutosh1109, 1 year ago

Please solve anyone

Attachments:

Anonymous: 12th or 13th ?
Ashutosh1109: both please
Anonymous: i need to verify the 12th, not sure about that , can you tell the answer so that i can cross check it ?
Ashutosh1109: 1/4 (2+ root 6 - root 2)
Anonymous: k , thanks , will solve asap
Anonymous: are the answers of 13 , 3.1 and 0.2 respectively ?
Ashutosh1109: yes

Answers

Answered by PrateekStar1
1
here is your answer ,

________________________
q - 1  \:  \:  \:  \:  \: it \: must  \: be \: solved \: by \:  \\ double \: rationalisation \\  \\  \frac{1}{ (\sqrt{3} -  \sqrt{2} ) + 1 } \times  \frac{( \sqrt{3} -  \sqrt{2} ) - 1 }{( \sqrt{3} -  \sqrt{2} ) - 1}  \\  \\  =   \frac{ \sqrt{3} -  \sqrt{2}  + 1 } { { \sqrt{3} }^{2} +  { \sqrt{2}}^{2}  - 2 \sqrt{6}  + 1 }  \\  \\   = \frac{ \sqrt{3} -  \sqrt{2}  + 1 }   { - 2 \sqrt{6}  }   \\  \\  =  \frac{ \sqrt{3 } -  \sqrt{2} + 1  }{ - 2 \sqrt{6} }  \times  \frac{ \sqrt{6} } { \sqrt{6} }  \\  \\  =  \frac{2 \sqrt{3}  - 3 \sqrt{2}  -  \sqrt{6}  }{12 }  \\  \\ hence \: now \: the \: term \\  \: is \: rationalised
q - 2 \\ a) \frac{1}{ \sqrt{3} -  \sqrt{2}  }  =  \frac{1}{0.3}   =  \frac{10}{3}  \\  \\ b) \frac{1}{3 + 2 \sqrt{2} }  =  \frac{1}{0.2}  = 5

_______________________

PrateekStar1: please mark as brainloest
Similar questions