Math, asked by shatakshi98, 6 months ago

please solve as soon as possible..​

Attachments:

Answers

Answered by suhail2070
1

Step-by-step explanation:

LHS

 \frac{ \sec(8 \alpha )  - 1}{ \sec(4 \alpha ) - 1 }  \\  \\  =  \frac{1 -  \cos(8 \alpha ) }{1 -  \cos(4 \alpha ) }  \times  \frac{ \cos(4 \alpha ) }{ \cos(8 \alpha ) }  \\  \\  =   \frac{2 { \sin(4 \alpha ) }^{2} }{2 { \sin(2 \alpha ) }^{2} }  \times   \frac{ \cos(4 \alpha ) }{ \cos(8 \alpha ) }  \\  \\  \\  \\  =  \frac{ 2\sin(4 \alpha )  \cos(4 \alpha )  \:  \:  \:  \: ( \sin(4 \alpha ) )}{2 { \sin(2 \alpha ) }^{2}  \cos(8 \alpha ) }  \\  \\  =   \frac{ \sin(8 \alpha ) }{ \cos(8 \alpha ) }  \times  \frac{2 \sin(2 \alpha ) \cos(2 \alpha )  }{2 { \sin(2 \alpha ) }^{2} }  \\  \\  =    \tan(8 \alpha )  \times  \frac{ \cos(2 \alpha ) }{ \sin(2 \alpha ) }  \\  \\  =  \frac{ \tan(8 \alpha ) }{ \tan(2 \alpha ) }

therefore LHS = RHS

Similar questions