Math, asked by kp6870301, 10 months ago

please solve asap
 \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6} } } } }

Answers

Answered by anu24239
8

\huge\mathfrak\red{Answer}

let \:  \\ x =  \sqrt{6  +  \sqrt{6 +  \sqrt{6 +  \sqrt{6  } } }  }  \\  \\ squaring \: on \: both \: side \\  \\  {x}^{2}  = 6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6} } } }  \\  \\ we \: let \: above \: x =  \sqrt{6 +  \sqrt{6 +  \sqrt{6} } }  \\  \\  {x}^{2}  = 6 + x \\  {x}^{2}  - x - 6 = 0 \\  {x}^{2}  - 3x + 2x - 6 = 0 \\ x(x - 3) + 2(x - 3) = 0 \\ (x + 2)(x - 3) = 0 \\ form \: here \: we \: get \: x = 3 \: or \:  - 2 \\  \\ x =  \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6} } } }  \\ which \: state \: that \: x \: is \: always \: positive \: so \:  \\  - 2 \: is \: not \: possible \\  \\  \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6} } } }  = 3

Answered by Anonymous
3

Answer:

before answer will help u lot

mark him as brinlist

and for more help follow me

hope u understood

Similar questions