Math, asked by Anonymous, 7 months ago

Please solve both the questions ! Please answer quickly Please please !

NOTE :- The both questions may have More than one correct answer

Attachments:

amitnrw: Q 7 a = 2 , b = - 1 Hence all options are correct except ab=2

Answers

Answered by pulakmath007
7

\displaystyle\huge\red{\underline{\underline{Solution}}}

ANSWER TO QUESTION : 7

Here f(x) = ax + b

By the given condition

 \sf{f(1) = 1 \:  \:  \:  \: and \:  \: f(0) =  - 1 \:  \: }

 \sf{Now \:  \:  \:f(1) = 1  \: } \: gives

 \sf{ a + b = 1\:  \: } \:  \: ......(1)

 \sf{Again \: f(0) =  - 1} \:  \: gives

 \sf{0 + b = - 1 }

 \implies \:  \sf{ b = - 1 } \:  \:  \:  .....(2)

Solving we get

 \sf{ a = 2 \:  \:  \:  \: and \:  \:  \: b =  - 1\:  \: }

CHECKING FOR OPTION (a)

 \sf{ 2a + 3b = 4 - 3 = 1\:  \: }

This option is CORRECT

CHECKING FOR OPTION (b)

 \sf{ 3a - 2b = 6 + 2 = 8\:  \: }

This option is CORRECT

CHECKING FOR OPTION (c)

 \sf{a + 2b = 2 - 2 = 0 \:  \: }

This option is CORRECT

CHECKING FOR OPTION (d)

 \sf{ ab = 2 \times  - 1 =  - 2\:  \: }

This option is INCORRECT

ANSWER TO QUESTION : 8

Given

 \sf{f(x) =  6x \:   \: \:  \: and  \:  \: \:  \: 2b = a + c \:  \: }

Now

 \sf{ f(a - 3) = 6a - 18\:  \: }

 \sf{ f(b - 3) = 6b - 18\:  \: }

 \sf{ f(c - 3) = 6c- 18\:  \: }

CHECKING FOR OPTION (a)

 \sf{ f(a - 3)  +  f(c- 3) \: \:  \: }

 \sf{ = 6a - 18 + 6c - 18 \:  \: }

 \sf{ = 6(a  + c) - 36 \:  \: }

 \sf{ = 12b - 36 \:  \: }

 \sf{ = 2 \times 6(b - 3)\:  \: }

 \sf{ =2 \: f(b - 3) \:  \: }

This option is CORRECT

CHECKING FOR OPTION (b)

 \displaystyle \sf{  \frac{f(a - 3) - f(b - 3)  \: }{f(b - 3) - f(c - 3)  } \:  \: }

 =  \displaystyle \sf{  \frac{6(a - 3) - 6(b - 3)  \: }{6(b - 3) - 6(c - 3)  } \:  \: }

 =  \displaystyle \sf{  \frac{6(a -b )  \: }{6(b -  c  )} \:  \: }

 =  \displaystyle \sf{  \frac{(a -b )  \: }{(b -  c  )} \:  \: }

 =  \displaystyle \sf{  \frac{(a -b )  \: }{(b -  2b + a)} \:  \: }

 =  \displaystyle \sf{  \frac{(a -b )  \: }{(a -  b)} \:  \: }

 =  \displaystyle \sf{1\: }

This option is CORRECT

CHECKING FOR OPTION (c)

 \displaystyle \sf{  \frac{f(a - 3) - f(c - 3)  \: }{f(b - 3) - f(a - 3)  } \:  \: }

 =  \displaystyle \sf{  \frac{6(a - 3) - 6(c - 3)  \: }{6(b - 3) - 6(a - 3)  } \:  \: }

 =  \displaystyle \sf{  \frac{(a -c )  \: }{(b - a )  } \:  \: }

 =  \displaystyle \sf{  \frac{(a  + a - 2b )  \: }{(b - a )  } \:  \: }

 =  \displaystyle \sf{  \frac{(2a  - 2b )  \: }{(b - a )  } \:  \: }

 =  \displaystyle \sf{   - 2\:  \: }

This option is INCORRECT

CHECKING FOR OPTION (d)

 \sf{ \:f(a - 3) - f(c - 3)  \: }

 \sf{ \: = 6(a - 3)  -  6(c - 3)  \: }

 \sf{ \: = 6a - 18  -  6c  + 18  \: }

 \sf{ \: = 6a   -  6c    \: }

 \sf{ \: = 6(a -  c ) \: }

This option is CORRECT

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Use Rolles Theorem to find a real number in the interval (0,3) Where the derivative of the function f(x)=x(x-3)^2 Vanish

https://brainly.in/question/22736169

Similar questions