Math, asked by charul15, 10 months ago

please solve correct answer will explanation I will mark you brainliest.​​

Attachments:

Answers

Answered by Anonymous
2

\huge\red{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Option \ (a)-1 \ is \ a \ right \ answer.}

\sf{The \ value \ of \ a \ is \ -1.}

\sf\orange{Given:}

\sf{The \ quadratic \ equations \ are}

\sf{\implies{x^{2}-ax-6=0}}

\sf{\implies{x^{2}+ax-2=0}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ a.}

\sf\green{\underline{\underline{Solution:}}}

(a)\sf{Let \ substitute \ a=-1 \ in \ both \ equations}

(1)\sf{\implies{x^{2}-(-1)x-6=0}}

\sf{\implies{x^{2}+1x-6=0}}

\sf{\implies{x^{2}+3x-2x-6=0}}

\sf{\implies{x(x+3)-2(x+3)=0}}

\sf{\implies{(x+3)(x-2)=0}}

\sf{\implies{x=-3 \ or \ 2}}

(2)\sf{\implies{x^{2}+(-1)x-2=0}}

\sf{\implies{x^{2}-x-2=0}}

\sf{\implies{x^{2}+x-2x-2=0}}

\sf{\implies{x(x+1)-2(x+1)=0}}

\sf{\implies{(x+1)(x-2)=0}}

\sf{\implies{x=-1 \ or \ 2}}

\sf{Here \ 2 \ is \ a \ common \ root \ in}

\sf{in \ both \ equations.}

\sf\purple{\tt{\therefore{The \ value \ of \ a \ is \ -1}}}


charul15: it is common roots not sum of roots.
charul15: Yes, thank you.
Similar questions