Math, asked by pubgqueen, 5 months ago

please solve: cosec x . cot x

dont spam❌️​

Answers

Answered by lovelymathewzion
5

Answer:

ithenenn karuthunnu.

cosec x +cot x = a

=> (1/sin x)+(cos x/sin x)=a

=> 1+cos x =a.sinx

=> 1+cos x =a.√(1-cos²x )

Now, squaring both sides; we get,

1+cos²x+2.cos x = a²- a².cos²x

=> (1+a²)cos²x +2.cos x +(1-a²) = 0

Therefore,

cos x = [-2±√{4–4.(1+a²)(1-a²)}] / 2(1+a²)

=> cos x = (-1 ± a²)/(1+a²)

Attachments:
Answered by Anonymous
9

Required solution :-

Let f(x) = cosec x cot x

Using Leibnitz product rule,

\rm f'(x)=cosec \ x(cot \ x)'+ cot \ x(cosec \ x)' \quad ...(1)

\rm Let \ f_1(x)=cot \ x

\rm f_1(x+h)=cot(x+h)

Using the first principle,

\rm f'_1(x)=\displaystyle \rm  \lim_{h \to 0} \dfrac{f_1(x+h)-f_1(x)}{h}

\rm = \displaystyle \rm  \lim_{h \to 0} \dfrac{cot(x+h)-cot \ x}{h}

\sf =\displaystyle \rm  \lim_{h \to 0} \dfrac{1}{h} \bigg(\dfrac{cos(x+h)}{sin(x+h)} -\dfrac{cos \ x}{sin \ x} \bigg)

\rm = \displaystyle \rm  \lim_{h \to 0} \dfrac{1}{h} \bigg[\dfrac{sin \ x \cos(x+h)-cos \ x \ sin(x+h)}{sin \ x \ sin(x+h)} \bigg]

\rm = \displaystyle \rm  \lim_{h \to 0}\dfrac{1}{h} \bigg[ \dfrac{sin (x-x-h)}{sin \ x \ sin(x+h)} \bigg]

Now we get,

\rm =\dfrac{1}{sin \  x}  \displaystyle \rm \lim_{h \to 0} \dfrac{1}{h} \bigg[ \dfrac{sin(-h)}{sin(x+h)} \bigg]

\rm =\dfrac{-1}{sin \ x} \bigg(  \displaystyle \rm \lim_{h \to 0}\dfrac{sin \ h}{h} \bigg) \bigg(\displaystyle \rm \lim_{h \to 0}\dfrac{1}{sin(x+h)} \bigg)

We get,

\rm = \dfrac{-1}{sin \ x}  1 \bigg(\dfrac{1}{sin(x+0)} \bigg)

\rm=\dfrac{-1}{sin^2 \ x}

\rm =-cosec^2 \ x

Therefore,

\rm (cot \ x)'=-cosec^2 \ x \quad ...(2)

Let f'₂ (x) = cosec x

Now, f₂ (x) = cosec x. Then f₂ (x + h) = cosec (x + h)

Using first principle,

\rm =f'(x)= \displaystyle \rm  \lim_{h \to 0}\frac{f_2(x+h)-f_2(x)}{h}

\rm = \displaystyle \rm  \lim_{h \to 0} \dfrac{1}{h} (cosec(x+h)-cosec \ x)

\rm =\displaystyle  \lim_{h \to 0} \dfrac{1}{h} \bigg[ \dfrac{1}{sin(x+h)} -\dfrac{1}{sin \ x} \bigg]

\rm =\displaystyle  \lim_{h \to 0} \dfrac{1}{h} \bigg[ \dfrac{sin \ x -sin(x+h)}{sin \ x \ sin(x+h)} \bigg]

Therefore,

\rm =\dfrac{1}{sin \ x} \ \displaystyle  \lim_{h \to 0} \dfrac{1}{h} \Bigg [\dfrac{2 \ cos \big(\dfrac{x+x+h}{2}\big) sin\big(\dfrac{x-x-h}{2} \big) }{sin(x+h)} \Bigg]

\rm =\dfrac{1}{sin \ x} \ \displaystyle  \lim_{h \to 0} \dfrac{1}{h} \Bigg [\dfrac{2 \ cos \big(\dfrac{2x+h}{2}\big) sin\big(\dfrac{-h}{2} \big) }{sin(x+h)} \Bigg]

\rm =\dfrac{1}{sin \ x} \ \displaystyle  \lim_{h \to 0}  \Bigg [\dfrac{-sin \big(\dfrac{h}{2}\big) \ cos \ \big(\dfrac{2x+h}{2} \big) }{ \big( \dfrac{h}{2} \big) \ sin \ (x+h)} \Bigg]

Now, we get

\rm =\dfrac{-1}{sin \ x} \displaystyle \rm  \lim_{h \to 0} \dfrac{sin \Big(\dfrac{h}{2}\Big) }{ \Big(\dfrac{h}{2}\Big)  } \displaystyle \rm  \lim_{h \to 0}  \dfrac{cos \Big(\dfrac{2x+h}{2} \Big)}{sin(x+h)}

\rm = \dfrac{-1}{sin \ x}\ 1 \  \dfrac{cos \Big(\dfrac{2x+0}{2} \Big)}{sin(x+0)}

\rm =\dfrac{-1}{sin \ x} \ \dfrac{cos \ x}{sin \ x}

\rm =-cos \ ecx \ cot \ x

Therefore,

\rm (cosec \ x)'= - cos \ ecx \ cot \ x \quad ...(3)

From (1), (2) and (3),

\rm =f'(x)cosec \ x(-cosec^2 \ x)+cot \ x(-cosec \ x \ cot \ x)

\rm =-cosec^3 \ x-cot^2 \ x \ cosec \ x

Similar questions