Math, asked by Mehulsinghania7, 11 months ago

Please solve Expression (tanA/1-cotA) + (CotA/1-tanA) can be written as

1)sinA cosA +1
2)secA cosecA + 1
3)tanA + cotA
4)secA + cosecA ​

Answers

Answered by Brainlyconquerer
6

Answer:

2)secA cosecA + 1

Step-by-step explanation:

Given expression :

\implies{\mathsf{ \frac{ \tan(a) }{1 -  \cot(a) }  +  \frac{ \cot(a) }{1 -  \tan(a) }}}  \\  \\ \implies{\mathsf{   \frac{ \sin(a) }{ \cos(a) }  \times  \frac{1}{1 -  \frac{ \cos(a) }{ \sin(a) } }  +  \frac{ \cos(a) }{ \sin(a) }  \times  \frac{1}{1 -  \frac{ \sin(a) }{ \cos(a) } } }} \\  \\  \implies{\mathsf{  \frac{ \sin(a) }{ \cos(a) }  \times  \frac{1}{ \frac{ \sin(a)  -  \cos(a) }{ \sin(a) } }  +  \frac{ \cos(a) }{ \sin(a) }  \times ( \frac{1}{ \frac{ \cos(a) -  \sin(a)  }{ \cos(a) } }) }} \\  \\ \implies{\mathsf{  \frac{ \sin(a) }{ \cos(a) }  \times ( \frac{ \sin(a) }{ \sin(a) -  \cos(a)  } ) +  \frac{ \cos(a) }{ \sin(a) }  \times  \frac{ \cos(a) }{ \cos(a) -  \sin(a)  }}}  \\  \\

Taking negative(minus) common from 2nd term

\implies{\mathsf{   \frac{ { \sin}^{2}(a)}{ \cos(a) \times ( \sin(a)  -  \cos(a)  )}  -  \frac{ { \cos }^{2}(a) }{ \sin(a) \times ( \sin(a)   -  \cos(a)) }}}  \\  \\

Taking L.C.M

\implies{\mathsf{ \frac{1}{ \sin(a)  -  \cos(a) } \times  ( \frac{ { \sin }^{3}(a)  -  { \cos }^{3}(a) }{  \cos(a)   \sin(a) } )}} \\  \\

Using identity ,

\implies A³ - B³ = (A - B)×(A² + AB + B²)

\implies{\mathsf{ \frac{ \sin(a) -  \cos(a) \times ( { \sin }^{2}(a)  +  \sin(a) \cos(a)  +  { \cos }^{2}(a))   }{( \sin(a)  -  \cos(a) ) \times ( \sin(a) \cos(a))  } }} \\  \\

By Canceling the terms

\implies{\mathsf{ \frac{ { \sin}^{2}(a) +  \sin(a) \cos(a)   +  { \cos}^{2} (a) }{ \cos(a)  \sin(a) } }} \\  \\ \implies{\mathsf{   \frac{1 +  \sin(a)  \cos(a) }{ \sin(a)  \cos(a) }}}  \\  \\ \implies{\mathsf{    \frac{1}{ \sin(a)  \cos(a) }  +  \frac{ \sin(a) \cos(a)  }{ \sin(a) \cos(a)  }}}  \\  \\  \implies{\mathsf{ 1 +  \sec(a)  \csc(a)}}

\rule{200}{1}

\underline{\bold{\mathtt{Identities\: Used}}}:—

◾ A³ - B³ = (A - B)×(A² + AB + B²)

◾Sin²A + Cos²A = 1

◾TanA = SinA ÷ CosA

Similar questions