Math, asked by parvathyAjit, 9 months ago

PLEASE SOLVE FAST...​

Attachments:

Answers

Answered by Unni007
3

\displaystyle\sf{Given\:,

\displaystyle\sf{\triangle ABC \:and\:altitude\:AD\:and\:CE\:of\:triangle\:intersects\:each\:other\:at\:point\:F}

______________________________

\displaystyle\sf{(i)\:\triangle AEF \sim \triangle CDF

\displaystyle\sf{In\:\triangle AEF \:and\: \triangle CDF\:,

  • \displaystyle\sf{<AEF=\:<CDF\:(since\:AD\:and\:CE\:are\:altitudes)
  • \displaystyle\sf{<AFE=\:<CFD\:(Vertically\:opposite\:angles)

\displaystyle\sf{Hence\:\triangle AEF \sim \triangle CDF\:(AA\:similarity)

\displaystyle\sf{\underline{Hence\:Proved\:!\:!\:!}}

______________________________

\displaystyle\sf{(ii)\:\triangle ABD \sim \triangle CBE

\displaystyle\sf{In\:\triangle ABD \:and\: \triangle CBE\:,

  • \displaystyle\sf{<ABD=\:<CBE\:(Common\:angle)
  • \displaystyle\sf{<ADB=\:<CEB\:(Since\:AD\:and\:CE\:are\:altitudes\:,\:both\:90^o)

\displaystyle\sf{Hence\:\triangle ABD \sim \triangle CBE\:(AA\:similarity)

\displaystyle\sf{\underline{Hence\:Proved\:!\:!\:!}}

______________________________

\displaystyle\sf{(iii)\:\triangle AEF \sim \triangle ADB

\displaystyle\sf{In\:\triangle AEF \:and\: \triangle ADB\:,

  • \displaystyle\sf{<FAE=\:<DAB\:(Common\:angle)
  • \displaystyle\sf{<AEF=\:<ADB\:(Since\:AD\:and\:CE\:are\:altitudes\:,\:both\:90^o)

\displaystyle\sf{Hence\:\triangle AEF \sim \triangle ADB\:(AA\:similarity)

\displaystyle\sf{\underline{Hence\:Proved\:!\:!\:!}}

______________________________

\displaystyle\sf{(iv)\:\triangle FDC \sim \triangle BEC

\displaystyle\sf{In\:\triangle FDC \:and\: \triangle BEC\:,

  • \displaystyle\sf{<BCE=\:<FCD\:(Common\:angle)
  • \displaystyle\sf{<CEB=\:<CDF\:(Since\:AD\:and\:CE\:are\:altitudes\:,\:both\:90^o)

\displaystyle\sf{Hence\:\triangle FDC \sim \triangle BEC\:(AA\:similarity)

\displaystyle\sf{\underline{Hence\:Proved\:!\:!\:!}}

Similar questions