Math, asked by yathiraj3737, 1 month ago

please solve fast
anyone solving I will mark brainly​

Attachments:

Answers

Answered by YourHelperAdi
0

To find :

the value of a and b

Given :

 \frac{6}{2 \sqrt{7}  - 5}  = a \sqrt{7}  + b

Solution :

First we need to find the Rationalising Factor (RF) of the term :

 \frac{6}{2 \sqrt{7}  - 5}

so, RF in the form of :

(a-b)(a+b) = a²-b²

so, RF of the term :

 \frac{6}{2 \sqrt{7}  - 5}   \times \frac{2 \sqrt{7}  + 5}{2 \sqrt{7}  + 5}  \\ \\   =  \frac{6(2 \sqrt{7} + 5) }{ ( { 2\sqrt{7} })^{2} -  {5}^{2}   }  \\  \\  =  \frac{12 \sqrt{7}  + 30}{14 - 25}  \\ \\   =  \frac{12 \sqrt{7}  + 30}{ - 11}  \\  \\  =  \frac{12 \sqrt{7} }{ - 11}  +  \frac{30}{ - 11}

hence,

 \frac{6}{2 \sqrt{7} - 5 }  =  \frac{12 \sqrt{7} }{ - 11}  +   \frac{30}{ - 11}

so, as Given,

 \frac{6}{2 \sqrt{7}  - 5}  = a \sqrt{7}  + b \\ so \:  \frac{12 \sqrt{7} }{ - 11}  +  \frac{30}{ - 11}  = a \sqrt{7}  + b \\  =  &gt; a =  \frac{12 \sqrt{7} }{ - 11} and</strong><strong>\:b =  \frac{30}{ - 11}

Similar questions