Math, asked by singindre824, 9 months ago

please solve fast with explained ​

Attachments:

Answers

Answered by waqarsd
0

Answer:

-   (\sqrt{2}  +  \sqrt{5} ) -  \frac{( \sqrt{110} + 4 \sqrt{11} ) }{6}

Step-by-step explanation:

Whenever we have a rational denominator we have to rationalise the denominator with its rational factor, which is obtained by changing the negative aggregate to positive or vice versa

given \\  \\  \frac{2}{ \sqrt{2}  +  \sqrt{5} -  \sqrt{11}  }  \\  \\ here \: we \: need \: to \: rationalize \: the \: denominator \\  \\  = \frac{2}{ (\sqrt{2}  +  \sqrt{5} -  \sqrt{11} ) } \times  \frac{(\sqrt{2}  +  \sqrt{5}  +   \sqrt{11} )}{(\sqrt{2}  +  \sqrt{5}  +   \sqrt{11} )}  \\  \\  =  \frac{2(\sqrt{2}  +  \sqrt{5}  +   \sqrt{11} )}{ {( \sqrt{2}  +  \sqrt{5}) }^{2}  -  { \sqrt{11} }^{2} }  \\  \\  =  \frac{2(\sqrt{2}  +  \sqrt{5}  +   \sqrt{11} )}{7 + 2 \sqrt{10}  - 11}  \\  \\  =  \frac{2(\sqrt{2}  +  \sqrt{5}  +   \sqrt{11} )}{2 \sqrt{10}  - 8}  \\  \\  =  \frac{\sqrt{2}  +  \sqrt{5}  +   \sqrt{11} }{ \sqrt{10} - 4 }  \\  \\ here \: again \: we \: need \: to \: rationalize \: the \: denominator \\  \\  =  \frac{(\sqrt{2}  +  \sqrt{5}  +   \sqrt{11})}{( \sqrt{10}  - 4)}  \times  \frac{( \sqrt{10} + 4 )}{( \sqrt{10}  + 4)}  \\  \\  =  \frac{(\sqrt{2}  +  \sqrt{5}  +   \sqrt{11})( \sqrt{10}  + 4)}{ { \sqrt{10} }^{2} -  {4}^{2}  }  \\  \\  = -   \frac{( \sqrt{20}  +  \sqrt{50}   +   \sqrt{110} + 4 \sqrt{2}   + 4 \sqrt{5}   +  4 \sqrt{11}) }{6}  \\  \\  =   - \frac{( \sqrt{4 \times 5}  +  \sqrt{25 \times 2}   +   \sqrt{10 \times 11}  + 4 \sqrt{2}  + 4 \sqrt{5}  +  4 \sqrt{11}  }{6}  \\  \\  = -   (\sqrt{2}  +  \sqrt{5} ) -  \frac{( \sqrt{110} + 4 \sqrt{11} ) }{6}

HOPE IT HELPS

Answered by Ramyamgowda456
0

Answer:

Please mark my answer as brainlist

Attachments:
Similar questions